|试卷下载
搜索
    上传资料 赚现金
    黑龙江省齐齐哈尔市2024届高三下学期二模考试数学试题及答案
    立即下载
    加入资料篮
    黑龙江省齐齐哈尔市2024届高三下学期二模考试数学试题及答案01
    黑龙江省齐齐哈尔市2024届高三下学期二模考试数学试题及答案02
    黑龙江省齐齐哈尔市2024届高三下学期二模考试数学试题及答案03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省齐齐哈尔市2024届高三下学期二模考试数学试题及答案

    展开
    这是一份黑龙江省齐齐哈尔市2024届高三下学期二模考试数学试题及答案,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。


    一、单选题
    1.已知为整数集,,则( )
    A.B.C.D.
    2.若,则( )
    A.B.1C.2D.4
    3.样本数据16,20,21,24,22,14,18,28的分位数为( )
    A.16B.17C.23D.24
    4.在中,,,则( )
    A.B.C.D.
    5.是一种由60个碳原子构成的分子,形似足球,又名足球烯,其分子结构由12个正五边形和20个正六边形组成.如图,将足球烯上的一个正六边形和相邻正五边形展开放平,若正多边形的边长为1,为正多边形的顶点,则( )

    A.1B.2C.3D.4
    6.早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若,则的最小值为( )
    A.B.C.D.
    7.已知函数的最小值为,则的最小值为( )
    A.B.C.0D.1
    8.数列满足,若,则( )
    A.B.C.D.
    二、多选题
    9.已知函数,则( )
    A.为偶函数
    B.曲线的对称中心为
    C.在区间上单调递减
    D.在区间上有一条对称轴
    10.已知为坐标原点,抛物线的焦点在直线上,且交于两点,为上异于的一点,则( )
    A.B.
    C.D.有且仅有3个点,使得的面积为
    11.已知函数的定义域为,设为的导函数,,,,则( )
    A.B.
    C.是奇函数D.
    三、填空题
    12.已知为坐标原点,,为圆上一点且在第一象限,,则直线的方程为 .
    13.某工厂为学校运动会定制奖杯,奖杯的剖面图形如图所示,已知奖杯的底座是由金属片围成的空心圆台,圆台上下底面半径分别为1,2,将一个表面积为的水晶球放置于圆台底座上,即得该奖杯,已知空心圆台(厚度不计)围成的体积为,则该奖杯的高(即水晶球最高点到圆台下底面的距离)为 .

    14.设为双曲线的一个实轴顶点,为的渐近线上的两点,满足,,则的渐近线方程是 .
    四、解答题
    15.已知不透明的袋子中装有6个大小质地完全相同的小球,其中2个白球,4个黑球,从中无放回地随机取球,每次取一个.
    (1)求前两次取出的球颜色不同的概率;
    (2)当白球被全部取出时,停止取球,记取球次数为随机变量,求的分布列以及数学期望.
    16.如图,在四棱锥中,平面,,,是等边三角形,为的中点.

    (1)证明:平面;
    (2)若,求平面与平面夹角的余弦值.
    17.设数列的前项和为.
    (1)求数列的通项公式;
    (2)在数列的和项之间插入个数,使得这个数成等差数列,其中,将所有插入的数组成新数列,设为数列的前项和,求.
    18.已知函数.
    (1)当时,求曲线在点处的切线方程;
    (2)当时,证明:.
    19.已知椭圆的左顶点为,过且斜率为的直线交轴于点,交的另一点为.
    (1)若,求的离心率;
    (2)点在上,若,且,求的取值范围.
    参考答案:
    1.D
    【分析】运用集合补集运算及解一元二次不等式即可.
    【详解】因为.
    故选:D.
    2.A
    【分析】借助复数的运算法则及共轭复数的概念计算即可得.
    【详解】,.
    故选:A.
    3.C
    【分析】先将数据排序后结合百分位数公式计算即可.
    【详解】由小到大排列为14,16,18,20,21,22,24,28,一共有8个数据,
    ,所以分位数为.
    故选:C.
    4.D
    【分析】结合正弦定理可得,再结合余弦定理可得.
    【详解】
    由正弦定理可得,,
    又,所以,
    不妨设,
    所以由余弦定理得.
    故选:D.
    5.B
    【分析】运用数量积定义计算即可.
    【详解】如图所示,

    连接,,由对称性可知,,
    取的中点,则,,
    又因为正六边形的边长为1,所以,
    所以,
    故选:B.
    6.D
    【分析】令,,结合基本不等式可得,化简可得,转化为求关于的二次函数在区间上的最小值即可.
    【详解】不妨设,,则,,
    所以,当且仅当时取等号,
    即,当且仅当时取等号,
    所以
    ,()
    所以当时,取得最小值,
    故选:D.
    7.B
    【分析】由二次函数的性质可知,令,运用导数可求得的最小值,进而可得结果.
    【详解】因为,
    令,则,
    当时,,单调递减,
    当时,,单调递增,


    故选:B.
    8.A
    【分析】利用累乘法,则得到规律,则求出,根据即可求出.
    【详解】,,
    ,,
    所以,
    同理可得,,.,
    因为,所以,则,
    因为,所以,
    故选:A.
    【点睛】关键点点睛:本题的关键是得到,则得到,最后根据即可得到答案.
    9.BD
    【分析】根据题意利用三角恒等变换整理得,结合正弦函数的性质逐项分析判断.
    【详解】由题意可得:,
    对于选项A:因为,所以为奇函数,故A错误;
    对于选项B:令,解得,
    所以曲线的对称中心为,,故B选项正确;
    对于选项C:因为,
    即,即在内不是单调递减,故C错误;
    对于选项D:因为,则,
    且在内有且仅有一条对称轴,
    所以在区间上有且仅有一条对称轴,故D选项正确;
    故选:BD.
    10.ACD
    【分析】直接将焦点坐标代入直线方程即可得到,从而判断A;将表示成参数形式,利用韦达定理即可判断B;利用两点之间的距离和直线的倾斜角的关系即可判断C;将的面积条件转化为点到直线的距离条件,即可判断D.
    【详解】
    因为抛物线的焦点在直线上,故代入得,所以,A选项正确;
    设,将抛物线与直线联立,得,即.
    所以由韦达定理得,,,B选项错误;
    由直线的斜率为,知其倾斜角为,
    故,
    所以,C选项正确;
    设的坐标为,到直线的距离为,则的面积.
    从而的面积为当且仅当.
    另一方面,直线的方程是,由点到直线的距离公式,
    知到直线的距离.
    所以当且仅当,即.
    而我们有
    .
    故满足条件的恰有三个:.
    所以有且仅有3个点,使得的面积为,D选项正确.
    故选:ACD.
    11.ABD
    【分析】赋值计算判断A;赋值并利用复合函数的求导法则求导探讨性质判断CD;探讨函数的周期计算判断D.
    【详解】函数,对任意,,
    对于A,令,得,而,则,A正确;
    对于B,令,得,
    则,两边求导得,,即,
    因此关于对称,,B正确;
    对于C,由,得,
    令,得,两边求导得,
    即,因此,函数是偶函数,C错误;
    对于D,由,得,则,
    因此函数的周期为4,,D正确.
    故选:ABD
    【点睛】思路点睛:涉及抽象函数等式问题,利用赋值法探讨函数的性质,再借助性质即可求解.
    12.
    【分析】数形结合求得直线的倾斜角,进而即可求得直线方程.
    【详解】根据题意,作图如下:

    易知点在圆上,由可知,,
    所以,又因为,所以,
    则直线斜率,故直线的方程为.
    故答案为:.
    13./
    【分析】由球的表面积、圆台体积公式可求得水晶球的半径及圆台的高,再求出水晶球球心到圆台上底面的距离,进而可求得结果.
    【详解】如图所示,

    设水晶球的半径为,则,解得,
    设圆台的高为,则,解得,
    又因为水晶球球心到圆台上底面的距离,
    所以该奖杯的高为.
    故答案为:.
    14.
    【分析】由角平分线定理,结合余弦定理,求得,再求的正切值,进而即可求得渐近线方程.
    【详解】根据题意,作图如下:

    依题意,为的角平分线,且,
    设,由角平分线定理可得:,则;
    在中,由余弦定理;
    在中,由余弦定理可得,,
    即,解得.
    故,,
    所以的渐近线方程是.
    故答案为:.
    【点睛】方法点睛:求双曲线的渐近线方程,常见有三种方法:
    ①直接求出,从而得解;
    ②只需要根据一个条件得到关于的齐次式,转化为的齐次式,从而得解;
    ③求得其中一个渐近线的倾斜角(或斜率),从而得解.
    15.(1)
    (2)分布列见解析;期望为
    【分析】(1)将所求事件表示成两个互斥事件的和事件,然后分别求概率再相加即可;
    (2)对不同的的取值,分类讨论所有可能的取出顺序即可求出的分布列,最后用数学期望的定义求出期望即可.
    【详解】(1)设事件为“前两次取出的球颜色不同”.
    设事件为“第一次取出了黑球,第二次取出了白球”,则,
    事件为“第一次取出了白球,第二次取出了黑球”,则,
    因为事件与不能同时发生,故它们互斥.
    所以,
    所以前两次取出的球颜色不同的概率为;
    (2)依题意,的取值为2,3,4,5,6,
    若第二次取出了全部白球,则只有两种取法(取决于2个白球取出的先后顺序),故,
    若第三次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有2种可能,取出的那个黑球有4种可能,
    故.
    若第四次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有3种可能,取出的另外2个黑球有种组合,它们又有2种排列方式,
    故,
    若第五次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有4种可能,取出的另外3个黑球有种组合,它们又有种排列方式,
    故,
    若第六次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有5种可能,取出的另外4个黑球只有1种组合,它们有种排列方式,
    故.
    所以的分布列为
    所以数学期望.
    16.(1)证明见解析
    (2)
    【分析】(1)先证明,,然后利用线面垂直的判定定理证明垂直于平面;
    (2)通过建立空间直角坐标系,由空间向量法即可求出两平面夹角的余弦值.
    【详解】(1)由于是等边三角形,为的中点.
    故是等边的中线,所以,
    又因为平面,在平面内,所以,
    由于和在平面内,且交于点,,,所以平面;
    (2)取的中点,连接,则由是的中点,知是三角形的中位线,故平行于.
    因为平面,平行于,
    所以垂直于平面,即三线两两垂直.
    以为坐标原点,的方向分别为轴的正方向,
    建立如图所示的空间直角坐标系,

    则由,,,,
    ,知,,,
    所以,.
    设平面的法向量为,则
    ,即,
    令,则,,故.
    显然平面的一个法向量为.
    而,
    故平面与平面夹角的余弦值为.
    17.(1)
    (2)
    【分析】(1)运用求解即可.
    (2)依题意可知,插入数列后,与所构成的数列为,,,,,,,,,,结合等差数列前n项和公式及错位相减法求和即可求得结果.
    【详解】(1)当时,,所以,
    当时,,即,
    所以,
    当时,符合,
    所以;
    (2)依题意,,




    所以,
    即,①
    则,②
    由①②可得,,
    所以.
    18.(1)
    (2)证明见解析
    【分析】(1)求导可得斜率,结合点斜式方程求解即可.
    (2)求,运用放缩可得,设,求导可得,结合基本不等式可得,从而可得单调性,进而可证得结果.
    【详解】(1)解:当时,,则,
    又,所以,即,
    所以在点处的切线方程为,即;
    (2)证明:设(),则,

    设,则,
    当时,,单调递减,
    当时,,单调递增,

    恒成立,
    由可知,
    所以(),
    设(),则,

    所以当时,,单调递增,,
    所以单调递增,,
    所以.
    【点睛】方法点睛:运用导数证明不等式常见方法:
    (1)将不等式转化为函数的最值问题:
    待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.
    (2)将不等式转化为两个函数的最值进行比较:
    若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x与ex,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.
    (3)适当放缩证明不等式:
    导数方法证明不等式中,最常见的是和与其他代数式结合的问题,对于这类问题,可以考虑先对和进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1) ,当且仅当时取等号.(2),当且仅当时取等号.
    19.(1)
    (2)
    【分析】(1)由可得点横坐标,代入椭圆方程可求得点纵坐标,由两点斜率公式可得的值,结合椭圆斜率公式求解即可.
    (2)设出直线方程,联立直线方程与椭圆方程可求得点横坐标,由两点间距离公式可得,同理可得,由可得,结合椭圆定义可知,转化为解不等式即可.
    【详解】(1)如图所示,
    由题意知,,设,由,可知,
    代入椭圆方程,可得,因为,所以,
    又,解得,
    所以离心率;
    (2)如图所示,
    设点,直线方程为,
    联立直线方程与椭圆方程可得,
    整理可得,解得,
    所以,
    将替换为,同理可得,,
    由,可得,
    整理得,
    由,解得或,
    ,即,解得或,
    故解集为.
    综上所述,的取值范围为.
    2
    3
    4
    5
    6
    相关试卷

    黑龙江省齐齐哈尔市2024届高三下学期二模考试数学: 这是一份黑龙江省齐齐哈尔市2024届高三下学期二模考试数学,文件包含2024届黑龙江省齐齐哈尔市高三二模考试数学试题pdf、数学考试答案pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。

    黑龙江省齐齐哈尔市2024届高三下学期二模考试数学试题及答案: 这是一份黑龙江省齐齐哈尔市2024届高三下学期二模考试数学试题及答案,文件包含2024届黑龙江省齐齐哈尔市高三二模考试数学试题pdf、数学考试答案pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。

    黑龙江省齐齐哈尔市2024届高三下学期二模考试数学: 这是一份黑龙江省齐齐哈尔市2024届高三下学期二模考试数学,文件包含2024届黑龙江省齐齐哈尔市高三二模考试数学试题pdf、数学考试答案pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map