|试卷下载
搜索
    上传资料 赚现金
    2024湖南省天壹名校联盟高二下学期3月联考数学试题含解析
    立即下载
    加入资料篮
    2024湖南省天壹名校联盟高二下学期3月联考数学试题含解析01
    2024湖南省天壹名校联盟高二下学期3月联考数学试题含解析02
    2024湖南省天壹名校联盟高二下学期3月联考数学试题含解析03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024湖南省天壹名校联盟高二下学期3月联考数学试题含解析

    展开
    这是一份2024湖南省天壹名校联盟高二下学期3月联考数学试题含解析,共11页。试卷主要包含了已知正项等比数列的前项和为,则,已知函数的最大值为,则等内容,欢迎下载使用。

    本试卷共4页.全卷满分150分,考试时间120分钟.
    注意事项:
    1.答题前,考生务必将自己的姓名,准考证号填写在本试卷和答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如有改动,用橡皮擦干净后,再选涂其他答案;回答非选择题时,将答案写在答题卡上,写在本试卷上无放.
    3.考试结束后,将本试卷和答题卡一并交回.
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.已知集合,则( )
    A. B. C. D.
    2.已知,则( )
    A.2 B. C. D.4
    3.过三点圆的标准方程为( )
    A. B.
    C. D.
    4.某次公益教育活动中有三个班级的授课任务,现有甲、乙、丙、丁4名老师报名参加,每个班级仅需要1名老师,每名老师最多在一个班级授课,若甲不能到第一个班级授课,则不同的安排方法共有( )
    A.18种 B.32种 C.22种 D.36种
    5.已知正项等比数列的前项和为,则( )
    A. B.14 C. D.
    6.杨辉三角是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,其分布规律如图所示,记图中第行第列的元素为,则的值为( )
    A.210 B.84 C.126 D.106
    7.近日,经我国某地质与生命科研所研究发现,在热带雨林地带,某种乔木型果树的根茎长度(单位:米)与其存活时间(单位:年)近似满足函数模型:.当该种果树的根茎长度大于2.9米时,其可稳定扎根于土壤中,吸收土壤中的水分和养料从而进入“稳定期”,则该种果树从栽种开始至少需要几年才能进入“稳定期”( )
    A.4 B.5 C.6 D.7
    8.棱长为2的正方体,以上下底面中心的连线为对称轴旋转角度后与原正方体公共区域的体积为,则( )
    A. B. C. D.
    二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得3分,有选错得0分.
    9.已知函数的最大值为,则( )
    A.
    B.在区间上单调递增
    C.的图象关于点对称
    D.曲线的对称轴方程为
    10.已知的展开式中第4项与第5项的二项式系数相等,则( )
    A. B.所有项的系数和为128
    C.常数项为945 D.的系数为21
    11.对于对称轴不为坐标轴的圆锥曲线,我们可以通过线性换元法来判断它的形状,如曲线,我们令,可以将转化为,进而得知曲线的形状是椭圆;再如,我们令,可以将转化为,进而得知曲线的形状是抛物线.根据以上信息,下列说法正确的是( )
    A.曲线的形状是双曲线
    B.曲线的形状是椭圆
    C.曲线的形状是椭圆
    D.若曲线的形状是双曲线,则的取值范围是
    三、填空题:本题共3小题,每小题5分,共15分.
    12.样本数据的分位数为__________.
    13.函数的最大值为__________.
    14.某省要求高考考场内最多安排30个座位,某地考点拟每个考场采用7788的行列分布座位(如图),则考生甲与考生乙既不前后相邻,也不左右相邻的坐法共有__________种.
    四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.
    15.(13分)已知的内角的对边分别为,且.
    (1)求;
    (2)若,求.
    16.(15分)已知正项数列的前项和为,数列和是公差分别为1和的等差数列.
    (1)求的通项公式;
    (2)证明:.
    17.(15分)如图所示多面体是由长方体和圆柱的一部分组成,其中分别是以点为圆心,圆心角为的圆弧的一部分,分别是的中点,,为的中点.
    (1)证明:平面;
    (2)若,求平面与平面夹角的余弦值.
    18.(17分)已知偶函数和奇函数均为幂函数,,且.
    (1)若,证明:;
    (2)若,且,求的取值范围.
    19.(17分)已知抛物线的准线方程为,过点作两条不重合的直线和与交于两点,与交于两点,且.设中点为中点为中点为.
    (1)求的方程;
    (2)证明:在定直线上,且的斜率为定值.
    2024年上学期高二3月大联考·数学
    参考答案、提示及评分细则
    1.【答案】D
    【解析】由题意可得,故,故选D.
    2.【答案】B
    【解析】由题意可得,故,故选B.
    3.【答案】D
    【解析】解法一:易知是直角三角形,外接圆的圆心为斜边的中点,半径其标准方程为,故选D.
    解法二:设圆的方程为,

    其标准方程为,故选D.
    4.【答案】A
    【解析】若甲老师去第一个班级授课,则不同的安排方法有种,若对甲老师授课班级不限制,则不同的安排的方法有种,故安排方法共有种,故选.
    5.【答案】C
    【解析】记等比数列的公比为,由题可知,解得或(舍去),所以,故选C.
    6.【答案】C
    【解析】由已知可得,故选C.
    7.【答案】C
    【解析】易知在上单调递增,,即,所以至少需要6年才能进入“稳定期”.故选C.
    8.【答案】A
    【解析】以正方体一面中心为原点建立如图所示坐标系,旋转后公共部分为棱柱,
    底面积为两个正方形公共部分的面积(图中阴影部分为例),由对称性知,
    由图可知直线倾斜角为,设,则点到的距离为

    .
    令,则,故选A.
    9.【答案】BC
    【解析】因为的最大值为,所以,解得,故A错误;时,,是的增区间,故B正确;,故C正确;令,可得曲线的对称轴方程为,故D错误.
    10.【答案】ABD
    【解析】因为第4项与第5项的二项式系数相等,所以解得,故正确;
    令,可得展开式中所有项的系数和为,故B正确;在中,第项,取,即,所以不存在常数项,故C错误;取,即,所以,所以的系数为21,故D正确,故选ABD.
    11.【答案】AC
    【解析】令,则转化为,其形状为双曲线,故A正确;令,则转化为,其形状为抛物线,故B错误;令,则转化为,再令,则曲线转化为,其形状为椭圆,故C正确;令,则转化为,当
    或时均不符合题意,再令,则转化为,若,则不为双曲线;若,则,则有或,综上的取值范围是,故D错误,故选AC.
    12.【答案】9
    【解析】将样本数据从小到大排列为.因为其中,所以分位数为从小到大排列的第2个数和第3个数的平均数,即为,故答案为9.
    13.【答案】2
    【解析】由题意可得.
    令,解得;令,解得,
    故在区间上单调递增,在上单调递减,
    所以,故答案为2.
    14.【答案】774
    【解析】本题考查学生在具体情景下对排列组合多情况分类讨论以及计算能力,根据给出的考场排布图可以看出位置与位置之间具有共性,是可以等效的,所以分三种情况:①位置等效,有种情况.②位于边界但不处于①中位置的位置等效,有种情况.
    ③不位于①②所说位置的位置等效,有种情况,全部相加得到答案为774种.
    15.【解析】(1)由已知得,即,
    即,即,因为,所以.
    (2)由余弦定理得,,解得,
    由正弦定理得,.
    16.【解析】(1)由题意知,解得.
    故,所以,又也满足,故.
    注:如果考生只代入的特殊情况得出答案,最多得4分.
    (2)由(1)得,
    累加可得得.
    17.【解析】(1)证明:连接,设与交于点.易知四边形为平行四边形;
    因为在四边形中,与交点为中点,为中点,
    所以为的中位线,所以;
    因为平面平面,所以平面.
    (2)以为原点,方向为轴,方向为轴,方向为轴,建立如图所示的空间直角坐标系.
    则,
    设平面的法向量,
    则.令,得,所以;
    易知平面的一个法向量,
    设平面与平面的夹角为,则,
    所以平面与平面夹角的余弦值为.
    18.【解析】(1)证明:由题意,设.
    由,得.
    方法一:
    则,因为函数单调递减,所以.
    方法二:
    则,由幂函数的性质可知,,所以.
    .因为为偶函数,为奇函数,所以,
    则.因为,所以,因此.
    (2)因为,所以.显然.
    当时,的定义域为,令解得(负根舍
    去).当时,;当时,.所以在单调递减,在单调递增,故的最小值为.
    因为,所以,解得,所以符合题意.
    当时,的定义域为,令解得(正根舍去).当时,;当.所以在单调递减,在单调递增,故的最小值为.因为,所以,解得,所以符合题意.综上所述,的取值范围为.
    19.【解析】(1)因为准线方程为,所以,所以的方程为.
    (2)设,由可得,所以,
    设,联立和,得.
    ,所以,
    又因为,所以,
    又由,可化简得,
    同理可得,所以和是方程的两个根,
    所以,
    ,同理得,所以,所以1,点在定直线上.
    讲台
    前门
    1
    16
    17
    30
    2
    15
    18
    29
    3
    14
    19
    28
    4
    13
    20
    27
    5
    12
    21
    26
    6
    11
    22
    25
    7
    10
    23
    24
    后门
    8
    9
    相关试卷

    湖南省天壹名校联盟2023-2024学年高二下学期3月联考数学试题(Word版附解析): 这是一份湖南省天壹名校联盟2023-2024学年高二下学期3月联考数学试题(Word版附解析),共11页。试卷主要包含了已知正项等比数列的前项和为,则,已知函数的最大值为,则等内容,欢迎下载使用。

    湖南省天壹名校联盟2023-2024学年高二下学期3月大联考数学试题: 这是一份湖南省天壹名校联盟2023-2024学年高二下学期3月大联考数学试题,共11页。试卷主要包含了已知正项等比数列的前项和为,则,已知函数的最大值为,则等内容,欢迎下载使用。

    2024湖南省天壹名校联盟高三入学摸底考试数学试题扫描版含解析: 这是一份2024湖南省天壹名校联盟高三入学摸底考试数学试题扫描版含解析,文件包含湖南天壹名校联盟2024届高三入学摸底考试数学答案pdf、湖南天壹名校联盟2024届高三入学摸底考试数学pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024湖南省天壹名校联盟高二下学期3月联考数学试题含解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map