终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年新高考数学一轮复习题型归类与强化测试专题15导数的概念及运算(学生版)

    立即下载
    加入资料篮
    2024年新高考数学一轮复习题型归类与强化测试专题15导数的概念及运算(学生版)第1页
    2024年新高考数学一轮复习题型归类与强化测试专题15导数的概念及运算(学生版)第2页
    2024年新高考数学一轮复习题型归类与强化测试专题15导数的概念及运算(学生版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习题型归类与强化测试专题15导数的概念及运算(学生版)

    展开

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题15导数的概念及运算(学生版),共11页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
    【考纲要求】
    1.通过实例分析,了解平均变化率、瞬时变化率,了解导数概念的实际背景.
    2.通过函数图象,理解导数的几何意义.
    3.了解利用导数定义求基本初等函数的导数.
    4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.
    5.能求简单的复合函数(形如f(ax+b))的导数.
    【考点预测】
    1.导数的概念
    (1)如果当Δx→0时,平均变化率eq \f(Δy,Δx)无限趋近于一个确定的值,即eq \f(Δy,Δx)有极限,则称y=f(x)在x=x0处可导,并把这个确定的值叫做y=f(x)在x=x0处的导数(也称瞬时变化率),记作f′(x0)或y′|x=x0,即f′(x0)= eq^\(lim,\s\d4(Δx→0)) \* MERGEFORMAT =eq^\(lim,\s\d4(Δx→0)) \* MERGEFORMAT .
    (2)当x=x0时,f′(x0)是一个唯一确定的数,当x变化时,y=f′(x)就是x的函数,我们称它为y=f(x)的导函数(简称导数),记为f′(x)(或y′),即f′(x)=y′=
    eq^\(lim,\s\d4(Δx→0)) \* MERGEFORMAT eq \f(f(x+Δx)-f(x),Δx).
    2.导数的几何意义
    函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,相应的切线方程为y-f(x0)=f′(x0)(x-x0).
    3.基本初等函数的导数公式
    4.导数的运算法则
    若f′(x),g′(x)存在,则有:
    [f(x)±g(x)]′=f′(x)±g′(x);
    [f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);
    eq \b\lc\[\rc\](\a\vs4\al\c1(\f(f(x),g(x))))′=eq \f(f′(x)g(x)-f(x)g′(x),[g(x)]2)(g(x)≠0);
    [cf(x)]′=cf′(x).
    5.复合函数的定义及其导数
    (1)一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)与u=g(x)的复合函数,记作y=f(g(x)).
    (2)复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′,即y对x的导数等于y对u的导数与u对x的导数的乘积.
    【常用结论】
    1.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,则(f(x0))′=0.
    2.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,f(x))))′=-eq \f(f′(x),[f(x)]2)(f(x)≠0).
    3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.
    4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.
    【方法技巧】
    1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.
    2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解.
    3.复合函数求导,应由外到内逐层求导,必要时要进行换元.
    4.求曲线在点P(x0,y0)处的切线,则表明P点是切点,只需求出函数在P处的导数,然后利用点斜式写出切线方程,若在该点P处的导数不存在,则切线垂直于x轴,切线方程为x=x0.
    5.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.过点处的切点坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐标是解题的关键.
    6.处理与切线有关的参数问题,通常利用曲线、切线、切点的三个关系列出参数的方程(组)并解出参数:
    (1)切点处的导数是切线的斜率;
    (2)切点在切线上,故满足切线方程;
    (3)切点在曲线上,故满足曲线方程.
    7.利用导数的几何意义求参数问题时,注意利用数形结合,化归与转化的思想方法.
    二、【题型归类】
    【题型一】导数的概念
    【典例1】已知函数h(x)=-4.9x2+6.5x+10.
    (1)计算从x=1到x=1+Δx的平均变化率,其中Δx的值为①2;②1;③0.1;④0.01.
    (2)根据(1)中的计算,当Δx越来越小时,函数h(x)在区间[1,1+Δx]上的平均变化率有怎样的变化趋势?
    【典例2】利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.
    【典例3】已知f(x)在x0处的导数f′(x0)=k,求下列各式的值:
    (1) eq \(lim,,\s\d6(Δx→0))eq^\(lim,\s\d4(Δx→0)) \* MERGEFORMAT eq \f(f(x0)-f(x0-Δx),2Δx);
    (2)eq \(lim,,\s\d6(Δx→0))eq^\(lim,\s\d4(Δx→0)) \* MERGEFORMAT eq \f(f(x0+Δx)-f(x0-Δx),Δx).
    【题型二】导数的运算
    【典例1】(多选)下列求导运算正确的是( )
    A.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,ln x)))′=-eq \f(1,xln2x)
    B.(x2ex)′=2x+ex
    C.eq \b\lc\[\rc\](\a\vs4\al\c1(cs\b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))))′=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))
    D.eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,x)))′=1+eq \f(1,x2)
    【典例2】函数f(x)的导函数为f′(x),若f(x)=x2+f′eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)))sin x,则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)))=________.
    【典例3】已知函数f′(x)=exsin x+excs x,则f(2 021)-f(0)等于( )
    A.e2 021cs 2 021 B.e2 021sin 2 021
    C.eq \f(e,2) D.e
    【题型三】求切线方程
    【典例1】曲线y=eq \f(2x-1,x+2)在点(-1,-3)处的切线方程为__________.
    【典例2】已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为______________.
    【典例3】已知曲线y=eq \f(1,3)x3+eq \f(4,3).
    (1)求满足斜率为1的曲线的切线方程;
    (2)求曲线在点P(2,4)处的切线方程;
    (3)求曲线过点P(2,4)的切线方程.
    【题型四】求参数的值(范围)
    【典例1】直线y=kx+1与曲线f(x)=aln x+b相切于点P(1,2),则2a+b等于( )
    A.4 B.3 C.2 D.1
    【典例2】已知f(x)=ln x,g(x)=eq \f(1,2)x2+mx+eq \f(7,2)(m0)的切线,恰有2条,则实数a的取值范围是________.
    【题型五】导数与函数图象
    【典例1】已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是( )

    【典例2】已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=______.
    【典例3】已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)等于( )
    A.-1 B.0 C.2 D.4
    【题型六】与两曲线的公切线有关的问题
    【典例1】已知函数f(x)=xln x,g(x)=x2+ax(a∈R),直线l与f(x)的图象相切于点A(1,0),若直线l与g(x)的图象也相切,则a等于( )
    A.0 B.-1 C.3 D.-1或3
    【典例2】若曲线C1:y=ax2(a>0)与曲线C2:y=ex存在公共切线,则a的取值范围为________.
    【典例3】若f(x)=ln x与g(x)=x2+ax两个函数的图象有一条与直线y=x平行的公共切线,则a等于( )
    A.1 B.2 C.3 D.3或-1
    三、【培优训练】
    【训练一】若曲线y=eq \f(1,4)sin 2x+eq \f(\r(3),2)cs2x在A(x1,y1),B(x2,y2)两点处的切线互相垂直,则|x1-x2|的最小值为( )
    A.eq \f(π,3) B.eq \f(π,2) C.eq \f(2π,3) D.π
    【训练二】已知曲线C1:y=ex+m,C2:y=x2,若恰好存在两条直线l1,l2与C1,C2都相切,则实数m的取值范围是____________.
    【训练三】给出定义:设f′(x)是函数y=f(x)的导函数,f″(x)是函数f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.已知函数f(x)=5x+4sin x-cs x的“拐点”是M(x0,f(x0)),则点M( )
    A.在直线y=-5x上
    B.在直线y=5x上
    C.在直线y=-4x上
    D.在直线y=4x上
    【训练四】已知函数f(x)=|ex-1|,x10,函数f(x)的图象在点A(x1,f(x1))和点B(x2,f(x2))处的两条切线互相垂直,且分别交y轴于M,N两点,则eq \f(|AM|,|BN|)的取值范围是________.
    【训练五】已知函数f(x)=x-eq \f(3,x).
    (1)求曲线f(x)过点(0,-3)的切线方程;
    (2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.
    【训练六】若直线l与曲线C满足下列两个条件:(1)直线l在点P(x0,y0)处与曲线C相切;(2)曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.下列命题正确的是________(写出所有正确命题的编号).
    ①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3
    ②直线l:x=-1在点P(-1,0)处“切过”曲线C:y=(x+1)2
    ③直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx
    ④直线l:y=x在点P(0,0)处“切过”曲线C:y=tanx
    ⑤直线l:y=x-1在点P(1,0)处“切过”曲线C:y=lnx
    四、【强化测试】
    【单选题】
    1. 下列求导运算正确的是( )
    A.eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(1,x)))′=1+eq \f(1,x2) B.(lg2x)′=eq \f(1,xln 2)
    C.(5x)′=5xlg5x D.(x2cs x)′=-2xsin x
    2. 曲线f(x)=eq \f(1-2ln x,x)在点P(1,f(1))处的切线l的方程为( )
    A.x+y-2=0 B.2x+y-3=0
    C.3x+y+2=0 D.3x+y-4=0
    3. 已知函数f(x)=eq \f(1,4)x2+cs x,则其导函数f′(x)的图象大致是( )
    4. 设点P是曲线y=x3-eq \r(3)x+eq \f(2,3)上的任意一点,则曲线在点P处切线的倾斜角α的取值范围为( )
    A.eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))∪eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(5π,6),π)) B.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(2π,3),π))
    C.eq \b\lc\[\rc\)(\a\vs4\al\c1(0,\f(π,2)))∪eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(2π,3),π)) D.eq \b\lc\(\rc\](\a\vs4\al\c1(\f(π,2),\f(5π,6)))
    5. 已知函数f(x)可导,则eq \(lim,\s\d5(Δt→0)) eq \f(f(2+2Δx)-f(2),2Δx)等于( )
    A.f′(x) B.f′(2)
    C.f(x) D.f(2)
    6. 如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=( )
    A.-1 B.0
    C.3 D.4
    7. 在等比数列{an}中,a1=2,a8=4,函数f(x)=x(x-a1)·(x-a2)·…·(x-a8),则f′(0)=( )
    A.26 B.29
    C.212 D.215
    8. 设曲线C:y=3x4-2x3-9x2+4,在曲线C上一点M(1,-4)处的切线记为l,则切线l与曲线C的公共点个数为( )
    A.1 B.2
    C.3 D.4
    【多选题】
    9. 若函数f(x)的导函数f′(x)的图象关于y轴对称,则f(x)的解析式可能为( )
    A.f(x)=3cs x B.f(x)=x3+x
    C.f(x)=x+eq \f(1,x) D.f(x)=ex+x
    10. 已知函数f(x)的图象如图,f′(x)是f(x)的导函数,则下列结论正确的是( )
    A.f′(3)>f′(2)
    B.f′(3)f′(3)
    D.f(3)-f(2)

    相关试卷

    2024年新高考数学一轮复习题型归类与强化测试专题23同构与双变量问题(学生版):

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题23同构与双变量问题(学生版),共7页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题32平面向量的概念及线性运算(学生版):

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题32平面向量的概念及线性运算(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(学生版):

    这是一份2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map