所属成套资源:2024年新高考数学一轮复习题型归类与强化测试专题全套
2024年新高考数学一轮复习题型归类与强化测试专题49两直线的位置关系(学生版)
展开
这是一份2024年新高考数学一轮复习题型归类与强化测试专题49两直线的位置关系(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
【考纲要求】
1.能根据斜率判定两条直线平行或垂直.
2.能用解方程组的方法求两条直线的交点坐标.
3.探索并掌握平面上两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
【考点预测】
1.两条直线平行与垂直的判定
(1)两条直线平行
对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.
(2)两条直线垂直
如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.
2.直线的交点与直线的方程组成的方程组的解的关系
(1)两直线的交点
点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的方程A2x+B2y+C2=0,即点P的坐标是方程组eq \b\lc\{(\a\vs4\al\c1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解,解这个方程组就可以得到这两条直线的交点坐标.
(2)两直线的位置关系
3.距离公式
(1)两点间的距离公式
平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=eq \r((x2-x1)2+(y2-y1)2).
特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=eq \r(x2+y2).
(2)点到直线的距离公式
平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=eq \f(|Ax0+By0+C|,\r(A2+B2)).
(3)两条平行线间的距离公式
一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=eq \f(|C1-C2|,\r(A2+B2)).
4.对称问题
(1)点P(x0,y0)关于点A(a,b)的对称点为P′(2a-x0,2b-y0).
(2)设点P(x0,y0)关于直线y=kx+b的对称点为P′(x′,y′),则有eq \b\lc\{(\a\vs4\al\c1(\f(y′-y0,x′-x0)·k=-1,,\f(y′+y0,2)=k·\f(x′+x0,2)+b,))可求出x′,y′.
【常用结论】
五种常用对称关系
(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).
(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).
(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).
(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).
(5)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).
【方法技巧】
1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件.
2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.
3.求过两直线交点的直线方程的方法
先求出两直线的交点坐标,再结合其他条件写出直线方程.
3.利用距离公式应注意:①点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;②两平行线间的距离公式要把两直线方程中x,y的系数化为相等.
4.解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.
5.几个常用结论
①点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).
②点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).
③点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).
6.几种常见的直线系方程
(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).
(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R).
(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.
二、【题型归类】
【题型一】两直线的平行与垂直
【典例1】已知直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0(a∈R),则“ea=eq \f(1,e)”是“l1∥l2”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【典例2】已知直线l经过点(1,-1),且与直线2x-y-5=0垂直,则直线l的方程为( )
A.2x+y-1=0 B.x-2y-3=0
C.x+2y+1=0 D.2x-y-3=0
【典例3】已知三条直线2x-3y+1=0,4x+3y+5=0,mx-y-1=0不能构成三角形,则实数m的取值集合为( )
A.eq \b\lc\{\rc\}(\a\vs4\al\c1(-\f(4,3),\f(2,3))) B.eq \b\lc\{\rc\}(\a\vs4\al\c1(-\f(4,3),\f(2,3),\f(4,3)))
C.eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(4,3),-\f(2,3))) D.eq \b\lc\{\rc\}(\a\vs4\al\c1(-\f(4,3),-\f(2,3),\f(2,3)))
【题型二】两直线的交点与距离问题
【典例1】已知直线kx-y+2k+1=0与直线2x+y-2=0的交点在第一象限,则实数k的取值范围是( )
A.-eq \f(3,2)
相关试卷
这是一份2024年新高考数学一轮复习题型归类与强化测试专题43直线平面平行的判定与性质(学生版),共10页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习题型归类与强化测试专题48直线的方程(教师版),共30页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。
这是一份2024年新高考数学一轮复习题型归类与强化测试专题48直线的方程(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。