最新中考几何专项复习专题21 直角三角形存在性问题巩固练习(基础)
展开策略一 建构高效的课堂教学模式-----先学后教,当堂训练。
高效的课堂教学模式是保证高效的复习效果的前提,学生在教师的指导和辅导下进行先自学、探究和及时训练,获得知识、发展能力的一种教学模式。
策略二 专题内容的设计应遵循教与学的认知规律和学生心理发展规律,凸显方法规律,由简单到复杂,由特殊到一般,再由一般到特殊
总结规律,推广一般。从一般到特殊:抛砖引玉,解决问题。
策略三 设计专题内容时考虑建立几何模型,体现思想方法,让学生驾轻就熟,化难为易,化繁为简。
几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。题目千变万化,但万变不离其宗。
直角三角形存在性问题巩固练习
1.如图,在四边形ABCD中,AD∥BC,∠BCD=30°,BC=26cm,CD=8cm,AD=16cm,动点P从点B出发,沿射线BC的方向以每秒3cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向D运动,点P、Q分别从点B、A同时出发,当点Q运动到点D时,点P随之停止运动,设运动时间为t(秒)
(1)当t为何值时(0<t<263),四边形PQDC是平行四边形?
(2)当t为何值时,以C、D、Q、P为顶点的四边形面积等于36cm2?
(3)是否存在点P,使△PCD是直角三角形?若存在,请求出所有满足条件的t的值,如不存在,请说明理由
2.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(1,3),点P的坐标是(0,b)(b>0且b≠3),直线AP交x轴于点B,过点P作PQ⊥AP,交x轴于点Q,点Q的坐标是(m,0),记点P关于x轴的对称点为P′,连接QP′、BP′.
(1)当b=1时,求△BPP′的面积;
(2)当0<b<3时,用含b的代数式表示m;
(3)连接AP′,是否存在b,使△ABP′为直角三角形?若存在,请求出所有满足条件的b和m的值;若不存在,请说明理由.
3.如图,直线AB经过点A(0,﹣4),B(﹣1,0),与双曲线y=mx在第二象限内交于点C,且△AOC的面积为3.
(1)求直线AB的解析式及m的值;
(2)试探究:在y轴上是否存在点M,使△ACM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
4.已知抛物线C1:y=﹣x2+bx+c经过(﹣1,﹣6),(2,0)两点
(1)求抛物线解析式;
(2)将抛物线C1向上平移6单位得到抛物线C2,若抛物线C2与y轴交于点B,与x轴交于点C,D(C在D左边),且点A(m,m+1)在C2上,连接BD,求点A关于直线BD对称点A′的坐标;
(3)在抛物线C2上是否存在点P,使△PBD是以BD为直角边的直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.
5.如图,菱形ABCD的边BC在x轴上,点A,D在第一象限,线段AB交y轴于E,且E为AB的中点,点M为AC和BD的交点,连接CE,有CE⊥AB,点A的坐标为(1,23);
(1)求直线CE的解析式;
(2)点P从原点出发,沿x轴正方向以每秒1个单位运动,运动时间为t,过点P作PQ⊥BC交射线EC于点Q,△BCQ面积为S,求S与t之间的关系式并直接写出t的取值范围;
(3)BD上是否存在点F,使△CEF为直角三角形?若存在,请直接写出线段MF的长;若不存在,请说明理由.
6.如图,一次函数y=x+m的图象经过点A(﹣2,0),交y轴于点D,对称轴为x=1的抛物线与x轴相交于点A、B,并与直线AD相交于点C,连接BD、BC,有∠OBD=∠BCD.
(1)求点B、C、D的坐标;
(2)求抛物线的函数解析式;
(3)抛物线上是否存在点P,使∠ACP为直角?若存在,求出点P的坐标;若不存在,请说明理由.
7.如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在直线为y轴,建立平面直角坐标系.已知OA=8,OB=6,一动点P从O出发沿OA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从点A出发沿AB以每秒1个单位长度向点B匀速运动,当Q到达B时,P、Q两点同时停止运动.设P、Q运动的时间为t秒(t>0).
(1)当t为何值时,△APQ的面积为92?
(2)在点P从O向A运动的过程中,在y轴上是否存在点E使得四边形PQBE为直角梯形?若存在,求出点E的坐标;若不存在,请说明理由;
(3)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB﹣BO﹣OP于点F.当DF经过原点O时,写出t的值.
8.已知:抛物线y=ax2+bx+3与x轴相交于A,B两点(A,B分别在原点的左右两侧),与y轴正半轴相交于C点,且OA:OB=1:3,△ABC的面积为6(如图1).
(1)求抛物线y=ax2+bx+3和直线BC的解析式;
(2)在抛物线上是否存在点M,使△BCM是以BC为直角边的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
9.如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足:|OA﹣2|+OC2﹣43•OC+12=0.
(1)求∠BAC的度数;
(2)把△ABC沿AC对折,点B落在点B1处,线段AB1与x轴交于点D,求直线BB1的解析式;
(3)在直线BB1上是否存在点P,使△ADP为直角三角形?若存在,请直接写出P点坐标.
10.已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=123,F为线段BE上一点,EF=7,连接AF.如图1,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=63,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时点P从A点出发,以每秒2个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点G到达线段AE上时,△GMN和点P同时停止运动.设运动时间为t秒,解答问题:
(1)在整个运动过程中,当点G在线段AE上时,求t的值;
(2)在整个运动过程中,是否存在点P,使△APQ是直角三角形?若存在,求出t的值;若不存在,说明理由.
11.如图,已知二次函数图象y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且A(﹣1,0),C(0,3)
(1)求这个二次函数解析式以及B的坐标;
(2)在(1)中抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若有求出Q的坐标.
12.如图,在平面直角坐标系中,P,Q分别是x轴,y轴的正半轴上两动点,OP=2,OQ=k,分别过P,Q作坐标轴的垂线,交反比例函数y=kx于点A,B两垂线交于点M,点E为线段OP上一动点.
(1)当点A在线段QM上时,求AM,BM的长(结果均用含k的代数式表示);
(2)点E在整个运动过程中,若存在△ABE是等腰直角三角形,请求出所有满足条件的k的值.
最新中考几何专项复习专题20 等腰三角形存在性问题知识精讲: 这是一份最新中考几何专项复习专题20 等腰三角形存在性问题知识精讲,共6页。
最新中考几何专项复习专题20 等腰三角形存在性问题巩固练习(提优): 这是一份最新中考几何专项复习专题20 等腰三角形存在性问题巩固练习(提优),文件包含中考几何专项复习专题20等腰三角形存在性问题巩固练习提优教师版含解析docx、中考几何专项复习专题20等腰三角形存在性问题巩固练习提优学生版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
最新中考数学压轴大题之经典模型 专题21 函数与直角三角形的存在性问题-【压轴必刷】: 这是一份最新中考数学压轴大题之经典模型 专题21 函数与直角三角形的存在性问题-【压轴必刷】,文件包含专题21函数与直角三角形的存在性问题-压轴必刷2023年中考数学压轴大题之经典模型培优案原卷版docx、专题21函数与直角三角形的存在性问题-压轴必刷2023年中考数学压轴大题之经典模型培优案解析版docx等2份试卷配套教学资源,其中试卷共103页, 欢迎下载使用。