搜索
    上传资料 赚现金
    2023年浙江省绍兴市中考数学真题试卷(解析版)
    立即下载
    加入资料篮
    2023年浙江省绍兴市中考数学真题试卷(解析版)01
    2023年浙江省绍兴市中考数学真题试卷(解析版)02
    2023年浙江省绍兴市中考数学真题试卷(解析版)03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年浙江省绍兴市中考数学真题试卷(解析版)

    展开
    这是一份2023年浙江省绍兴市中考数学真题试卷(解析版),共27页。试卷主要包含了小器一容三斛;大器一,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分
    1. 计算的结果是( )
    A. B. C. 1D. 3
    【答案】A
    【解析】
    根据有理数的减法法则进行计算即可.
    解:,
    故选:A.
    【点拨】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.
    2. 据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是( )
    A. B. C. D.
    【答案】B
    【解析】
    科学记数法表现形式为的形式,其中为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,由此进行求解即可得到答案.
    解:,
    故选B.
    【点拨】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.
    3. 由8个相同的立方体搭成的几何体如图所示,则它的主视图是( )

    A. B. C. D.
    【答案】D
    【解析】
    找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
    从正面看第一层是三个小正方形,第二层左边一个小正方形,中间没有,右边1个小正方形,
    故选:D.
    【点拨】本题考查了三视图的知识,要求同学们掌握主视图是从物体的正面看得到的视图.
    4. 下列计算正确的是( )
    A. B. C. D.
    【答案】C
    【解析】
    根据同底数幂相除法则判断选项A;根据幂的乘方法则判断选项B;根据平方差公式判断选项C;根据完全平方公式判断选项D即可.
    解:A. ,原计算错误,不符合题意;
    B. ,原计算错误,不符合题意;
    C. ,原计算正确,符合题意;
    D. ,原计算错误,不符合题意;
    故选:C.
    【点拨】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.
    5. 在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是( )
    A. B. C. D.
    【答案】C
    【解析】
    根据概率的意义直接计算即可.
    解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是,
    故选:C.
    【点拨】本题考查了概率的计算,解题关键是熟练运用概率公式.
    6. 《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为斛,小容器的容量为斛,则可列方程组是( )
    A. B. C. D.
    【答案】B
    【解析】
    设大容器的容积为x斛,小容器的容积为y斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x、y的二元一次方程组.
    解:设大容器的容积为x斛,小容器的容积为y斛,
    根据题意得:.
    故选:B.
    【点拨】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x、y的二元一次方程组是解题的关键.
    7. 在平面直角坐标系中,将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是( )
    A. B. C. D.
    【答案】D
    【解析】
    把横坐标加2,纵坐标加1即可得出结果.
    解:将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是.
    故选:D.
    【点拨】本题考查点的平移中坐标的变换,把向上(或向下)平移h个单位,对应的纵坐标加上(或减去)h,,把向右上(或向左)平移n个单位,对应的横坐标加上(或减去)n.掌握平移规律是解题的关键.
    8. 如图,在矩形中,为对角线的中点,.动点在线段上,动点在线段上,点同时从点出发,分别向终点运动,且始终保持.点关于的对称点为;点关于的对称点为.在整个过程中,四边形形状的变化依次是( )
    A. 菱形→平行四边形→矩形→平行四边形→菱形
    B. 菱形→正方形→平行四边形→菱形→平行四边形
    C. 平行四边形→矩形→平行四边形→菱形→平行四边形
    D. 平行四边形→菱形→正方形→平行四边形→菱形
    【答案】A
    【解析】
    根据题意,分别证明四边形是菱形,平行四边形,矩形,即可求解.
    ∵四边形是矩形,
    ∴,,
    ∴,,
    ∵、,

    ∵对称,
    ∴,

    ∵对称,
    ∴,
    ∴,
    同理,


    ∴四边形是平行四边形,
    如图所示,

    当三点重合时,,


    ∴四边形是菱形,
    如图所示,当分别为的中点时,
    设,则,,
    在中,,
    连接,,
    ∵,
    ∴是等边三角形,
    ∵为中点,
    ∴,,
    ∴,
    根据对称性可得,
    ∴,
    ∴,
    ∴是直角三角形,且,
    ∴四边形是矩形,

    当分别与重合时,都是等边三角形,则四边形是菱形

    ∴在整个过程中,四边形形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,
    故选:A.
    【点拨】本题考查了菱形性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.
    9. 已知点在同一个函数图象上,则这个函数图象可能是( )
    A. B. C. D.
    【答案】B
    【解析】
    点在同一个函数图象上,可得N、P关于y轴对称,当时,y随x的增大而增大,即可得出答案.
    解:∵,
    ∴得N、P关于y轴对称,
    ∴选项A.C错误,
    ∵在同一个函数图象上,
    ∴当时,y随x的增大而增大,
    ∴选项D错误,选项B正确.
    故选:B.
    【点拨】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.
    10. 如图,在中,是边上的点(不与点,重合).过点作交于点;过点作交于点.是线段上的点,;是线段上的点,.若已知的面积,则一定能求出( )

    A. 的面积B. 的面积
    C. 的面积D. 的面积
    【答案】D
    【解析】
    如图所示,连接,证明,得出,由已知得出,则,又,则,进而得出,可得,结合题意得出,即可求解.
    解:如图所示,连接,

    ∵,,
    ∴,,,.
    ∴,.
    ∴.
    ∵,,
    ∴,
    ∴.
    ∴.
    又∵,
    ∴.
    ∴.

    ∴.
    ∴.
    ∴.
    ∵,
    ∴.
    ∵,
    ∴.
    故选:D.
    【点拨】本题考查了相似三角形的知识,解题的关键是掌握相似三角形的性质与判定,平行线的判定和性质,等面积转换.
    卷Ⅱ(非选择题)
    二、填空题(本大题有6小题,每小题5分,共30分)
    11. 因式分解:m2﹣3m=__________.
    【答案】
    【解析】
    题中二项式中各项都含有公因式,利用提公因式法因式分解即可得到答案.
    解:,
    故答案为:.
    【点拨】本题考查整式运算中的因式分解,熟练掌握因式分解的方法技巧是解决问题的关键.
    12. 如图,四边形内接于圆,若,则的度数是________.
    【答案】##80度
    【解析】
    根据圆内接四边形的性质:对角互补,即可解答.
    解:∵四边形内接于,
    ∴,
    ∵,
    ∴.
    故答案为:.
    【点拨】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.
    13. 方程的解是________.
    【答案】
    【解析】
    先去分母,左右两边同时乘以,再根据解一元一次方程的方法和步骤进行解答,最后进行检验即可.
    解:去分母,得:,
    化系数为1,得:.
    检验:当时,,
    ∴是原分式方程的解.
    故答案为:.
    【点拨】本题主要考查了解分式方程,解题的关键是掌握解分式方程的方法和步骤,正确找出最简公分母,注意解分式方程要进行检验.
    14. 如图,在菱形中,,连接,以点为圆心,长为半径作弧,交直线于点,连接,则的度数是________.

    【答案】或
    【解析】
    根据题意画出图形,结合菱形的性质可得,再进行分类讨论:当点E在点A上方时,当点E在点A下方时,即可进行解答.
    解:∵四边形为菱形,,
    ∴,
    连接,
    ①当点E在点A上方时,如图,
    ∵,,
    ∴,
    ②当点E在点A下方时,如图,
    ∵,,
    ∴,
    故答案为:或.

    【点拨】本题主要考查了菱形的性质,等腰三角形的性质,三角形的内角和以及三角形的外角定理,解题的关键是掌握菱形的对角线平分内角;等腰三角形两底角相等,三角形的内角和为;三角形的一个外角等于与它不相邻的两个内角之和.
    15. 如图,在平面直角坐标系中,函数(为大于0的常数,)图象上的两点,满足.的边轴,边轴,若的面积为6,则的面积是________.
    【答案】2
    【解析】
    过点作轴于点,轴于点,于点,利用,,得到,结合梯形的面积公式解得,再由三角形面积公式计算,即可解答.
    解:如图,过点作轴于点,轴于点,于点,

    故答案为:2.
    【点拨】本题考查反比例函数中的几何意义,是重要考点,掌握相关知识是解题关键.
    16. 在平面直角坐标系中,一个图形上的点都在一边平行于轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数的图象(抛物线中的实线部分),它的关联矩形为矩形.若二次函数图象的关联矩形恰好也是矩形,则________.

    【答案】或
    【解析】
    根据题意求得点,,,根据题意分两种情况,待定系数法求解析式即可求解.
    由,当时,,
    ∴,
    ∵,四边形是矩形,
    ∴,
    ①当抛物线经过时,将点,代入,

    解得:
    ②当抛物线经过点时,将点,代入,

    解得:
    综上所述,或,
    故答案为:或.
    【点拨】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.
    三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
    17. (1)计算:.
    (2)解不等式:.
    【答案】(1)1;(2)
    【解析】
    (1)根据零指数幂的性质、二次根式的化简、绝对值的性质依次解答;
    (2)先移项,再合并同类项,最后化系数为1即可解答.
    解:(1)原式.
    (2)移项得,
    即,
    ∴.
    ∴原不等式解是.
    【点拨】本题考查实数的混合运算、零指数幂、二次根式的化简和解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.
    18. 某校兴趣小组通过调查,形成了如下调查报告(不完整).
    结合调查信息,回答下列问题:
    (1)本次调查共抽查了多少名学生?
    (2)估计该校900名初中生中最喜爱篮球项目的人数.
    (3)假如你是小组成员,请你向该校提一条合理建议.
    【答案】(1)100 (2)360
    (3)答案不唯一,见解析
    【解析】
    (1)根据乒乓球人数和所占比例,求出抽查的学生数;
    (2)先求出喜爱篮球学生比例,再乘以总数即可;
    (3)从图中观察或计算得出,合理即可.
    (1)
    被抽查学生数:,
    答:本次调查共抽查了100名学生.
    (2)
    被抽查的100人中最喜爱羽毛球的人数为:,
    ∴被抽查的100人中最喜爱篮球的人数为:,
    ∴(人).
    答:估计该校900名初中生中最喜爱篮球项目的人数为360.
    (3)
    答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.
    【点拨】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.
    19. 图1是某款篮球架,图2是其示意图,立柱垂直地面,支架与交于点,支架交于点,支架平行地面,篮筺与支架在同一直线上,米,米,.

    (1)求的度数.
    (2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:)
    【答案】(1)
    (2)该运动员能挂上篮网,理由见解析
    【解析】
    (1)根据直角三角形的两个锐角互余即可求解;
    (2)延长交于点,根据题意得出,解,求得,根据与比较即可求解.
    (1)
    解:∵,
    ∴,
    ∵,
    ∴.
    (2)
    该运动员能挂上篮网,理由如下.
    如图,延长交于点,

    ∵,
    ∴,
    又∵,
    ∴,
    在中,,
    ∴,
    ∴该运动员能挂上篮网.
    【点拨】本题考查了解直角三角形的应用,直角三角形的两个锐角互余,熟练掌握三角函数的定义是解题的关键.
    20. 一条笔直的路上依次有三地,其中两地相距1000米.甲、乙两机器人分别从两地同时出发,去目的地,匀速而行.图中分别表示甲、乙机器人离地的距离(米)与行走时间(分钟)的函数关系图象.

    (1)求所在直线的表达式.
    (2)出发后甲机器人行走多少时间,与乙机器人相遇?
    (3)甲机器人到地后,再经过1分钟乙机器人也到地,求两地间的距离.
    【答案】(1)
    (2)出发后甲机器人行走分钟,与乙机器人相遇
    (3)两地间的距离为600米
    【解析】
    (1)利用待定系数法即可求解;
    (2)利用待定系数法求出所在直线的表达式,再列方程组求出交点坐标,即可;
    (3)列出方程即可解决.
    (1)
    ∵,
    ∴所在直线的表达式为.
    (2)
    设所在直线的表达式为,
    ∵,
    ∴解得
    ∴.
    甲、乙机器人相遇时,即,解得,
    ∴出发后甲机器人行走分钟,与乙机器人相遇.
    (3)
    设甲机器人行走分钟时到地,地与地距离,
    则乙机器人分钟后到地,地与地距离,
    由,得.
    ∴.
    答:两地间的距离为600米.
    【点拨】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.
    21. 如图,是的直径,是上一点,过点作的切线,交的延长线于点,过点作于点.

    (1)若,求的度数.
    (2)若,求的长.
    【答案】(1)
    (2)
    【解析】
    (1)根据三角形的外角的性质,即可求解.
    (2)根据是的切线,可得,在中,勾股定理求得,根据,可得,进而即可求解.
    (1)
    解:∵于点,
    ∴,
    ∴.

    (2)
    ∵是的切线,是的半径,
    ∴.
    在中,
    ∵,
    ∴.
    ∵,

    ∴,即,
    ∴.
    【点拨】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.
    22. 如图,在正方形中,是对角线上的一点(与点不重合),分别为垂足.连接,并延长交于点.

    (1)求证:.
    (2)判断与是否垂直,并说明理由.
    【答案】(1)见解析 (2)与垂直,理由见解析
    【解析】
    (1)由正方形的性质,得到,结合垂直于同一条直线的两条直线平行,可得,再根据平行线的性质解答即可;
    (2)连接交于点,由证明,再根据全等三角形对应角相等得到,继而证明四边形为矩形,最后根据矩形的性质解答即可.
    (1)
    解:在正方形中,
    ∴,
    ∴.

    (2)
    与垂直,理由如下.
    连接交于点.
    ∵为正方形的对角线,
    ∴,
    又∵,
    ∴,
    ∴.
    在正方形中,,
    又∵,
    ∴四边形为矩形,
    ∴,
    ∴,
    ∴.
    又∵,
    ∴,
    ∴,
    ∴.
    【点拨】本题考查正方形的性质、平行线的性质、全等三角形的判断与性质、矩形的判定与性质等知识,综合性较强,是重要考点,掌握相关知识是解题关键.
    23. 已知二次函数.
    (1)当时,
    ①求该函数图象的顶点坐标.
    ②当时,求的取值范围.
    (2)当时,的最大值为2;当时,的最大值为3,求二次函数的表达式.
    【答案】(1)①;②当时,
    (2)
    【解析】
    (1)①将代入解析式,化为顶点式,即可求解;
    ②已知顶点,根据二次函数的增减性,得出当时,有最大值7,当时取得最小值,即可求解;
    (2)根据题意时,的最大值为2;时,的最大值为3,得出抛物线的对称轴在轴的右侧,即,由抛物线开口向下,时,的最大值为2,可知,根据顶点坐标的纵坐标为3,求出,即可得解.
    (1)
    解:①当时,,
    ∴顶点坐标为.
    ②∵顶点坐标为.抛物线开口向下,
    当时,随增大而增大,
    当时,随增大而减小,
    ∴当时,有最大值7.

    ∴当时取得最小值,最小值;
    ∴当时,.
    (2)
    ∵时,的最大值为2;时,的最大值为3,
    ∴抛物线的对称轴在轴的右侧,
    ∴,
    ∵抛物线开口向下,时,的最大值为2,
    ∴,
    又∵,
    ∴,
    ∵,
    ∴,
    ∴二次函数的表达式为.
    【点拨】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.
    24. 在平行四边形中(顶点按逆时针方向排列),为锐角,且.

    (1)如图1,求边上的高的长.
    (2)是边上的一动点,点同时绕点按逆时针方向旋转得点.
    ①如图2,当点落在射线上时,求的长.
    ②当是直角三角形时,求的长.
    【答案】(1)8 (2)①;②或
    【解析】
    (1)利用正弦的定义即可求得答案;
    (2)①先证明,再证明,最后利用相似三角形对应边成比例列出方程即可;
    ②分三种情况讨论完成,第一种:为直角顶点;第二种:为直角顶点;第三种,为直角顶点,但此种情况不成立,故最终有两个答案.
    (1)
    在中,,
    中,.
    (2)
    ①如图1,作于点,由(1)得,,则,
    作交延长线于点,则,

    ∴.

    ∴.
    由旋转知,
    ∴.
    设,则.
    ∵,
    ∴,
    ∴,
    ∴,即,
    ∴,
    ∴.
    ②由旋转得,,
    又因为,所以.
    情况一:当以为直角顶点时,如图2.

    ∵,
    ∴落在线段延长线上.
    ∵,
    ∴,
    由(1)知,,
    ∴.
    情况二:当以为直角顶点时,如图3.

    设与射线的交点为,
    作于点.
    ∵,
    ∴,
    ∵,
    ∴,
    ∴.
    又∵,
    ∴,
    ∴.
    设,则,

    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    化简得,
    解得,
    ∴.
    情况三:当以为直角顶点时,
    点落在的延长线上,不符合题意.
    综上所述,或.
    【点拨】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.调查目的
    1.了解本校初中生最喜爱的球类运动项目
    2.给学校提出更合理地配置体育运动器材和场地的建议
    调查方式
    随机抽样调查
    调查对象
    部分初中生
    调查内容
    你最喜爱的一个球类运动项目(必选)
    A.篮球 B.乒乓球 C.足球 D.排球 E.羽毛球
    调查结果


    建议
    ……
    相关试卷

    2023年浙江省绍兴市中考数学真题 试卷: 这是一份2023年浙江省绍兴市中考数学真题 试卷,共11页。

    精品解析:2022年浙江省绍兴市中考数学真题(解析版): 这是一份精品解析:2022年浙江省绍兴市中考数学真题(解析版),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省绍兴市中考数学真题 试卷: 这是一份2023年浙江省绍兴市中考数学真题 试卷,共11页。试卷主要包含了小器一容三斛;大器一,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map