- 第01讲 多边形及平行四边形基本性质(题型突破+专题精练)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 0 次下载
- 第02讲 特殊四边形的性质与判定(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 0 次下载
- 第02讲 特殊四边形的性质与判定(题型突破+专题精练)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 0 次下载
- 第02讲 图形的对称、平移、旋转与位似(含图形的运动与坐标)(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 0 次下载
- 第02讲 图形的对称、平移、旋转与位似(含图形的运动与坐标)(题型突破+专题精练)-备战2024年中考数学一轮复习考点研究(全国通用) 试卷 0 次下载
第07讲 二次函数表达式的确定(含抛物线的变化)(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用)
展开第七讲二次函数表达式的确定(含抛物线的变化)
→➊考点精析←
→➋真题精讲←
考向一待定系数法求函数的解析式
考向二二次函数图像的翻折
第七讲二次函数表达式的确定(含抛物线的变化)
二次函数是非常重要的函数,年年都会考查,总分值为18~20分,预计2024年各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查.
→➊考点精析←
1、 用待定系数法求二次函数的解析式
(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.
(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:
2、图象的平移:将二次函数y=ax2 (a≠0)的图象进行平移,可得到y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.
⑴ 将y=ax2的图象向上(c>0)或向下(c< 0)平移|c|个单位,即可得到y=ax2+c的图象.其顶点是(0,c)形状、对称轴、开口方向与抛物线y=ax2相同.
⑵ 将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,即可得到y=a(x-h)2的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.
⑶ 将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h)2 +k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.
记住规律:左加右减,上加下减
→➋真题精讲←
考向一待定系数法求解析式
1.(2023·四川成都·统考中考真题)如图,二次函数的图象与x轴交于,两点,下列说法正确的是( )
A.抛物线的对称轴为直线B.抛物线的顶点坐标为
C.,两点之间的距离为D.当时,的值随值的增大而增大
2.(2023·新疆·统考中考真题)如图,在平面直角坐标系中,直线与抛物线相交于点,.结合图象,判断下列结论:①当时,;②是方程的一个解;③若,是抛物线上的两点,则;④对于抛物线,,当时,的取值范围是.其中正确结论的个数是( )
A.4个B.3个C.2个D.1个
3.(2023·浙江杭州·统考中考真题)设二次函数,(,是实数).已知函数值和自变量的部分对应取值如下表所示:
(1)若,求二次函数的表达式;
(2)写出一个符合条件的的取值范围,使得随的增大而减小.
(3)若在m、n、p这三个实数中,只有一个是正数,求的取值范围.
4.(2023·浙江绍兴·统考中考真题)已知二次函数.
(1)当时,
①求该函数图象的顶点坐标.
②当时,求的取值范围.
(2)当时,的最大值为2;当时,的最大值为3,求二次函数的表达式.
5.(2023·浙江宁波·统考中考真题)如图,已知二次函数图象经过点和.
(1)求该二次函数的表达式及图象的顶点坐标.
(2)当时,请根据图象直接写出x的取值范围.
6.(2023·浙江·统考中考真题)已知点和在二次函数是常数,的图像上.
(1)当时,求和的值;
(2)若二次函数的图像经过点且点A不在坐标轴上,当时,求的取值范围;
(3)求证:.
考向二二次函数图像的平移(翻折)
7.(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,其中,.
(1)求该抛物线的表达式;
(2)点是直线下方抛物线上一动点,过点作于点,求的最大值及此时点的坐标;
(3)在(2)的条件下,将该抛物线向右平移个单位,点为点的对应点,平移后的抛物线与轴交于点,为平移后的抛物线的对称轴上任意一点.写出所有使得以为腰的是等腰三角形的点的坐标,并把求其中一个点的坐标的过程写出来.
8.(2023·四川乐山·统考中考真题)已知是抛物(b为常数)上的两点,当时,总有
(1)求b的值;
(2)将抛物线平移后得到抛物线.
探究下列问题:
①若抛物线与抛物线有一个交点,求m的取值范围;
②设抛物线与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为点E,外接圆的圆心为点F,如果对抛物线上的任意一点P,在抛物线上总存在一点Q,使得点P、Q的纵坐标相等.求长的取值范围.
9.(2023·湖南岳阳·统考中考真题)已知抛物线与轴交于两点,交轴于点.
(1)请求出抛物线的表达式.
(2)如图1,在轴上有一点,点在抛物线上,点为坐标平面内一点,是否存在点使得四边形为正方形?若存在,请求出点的坐标;若不存在,请说明理由.
(3)如图2,将抛物线向右平移2个单位,得到抛物线,抛物线的顶点为,与轴正半轴交于点,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.
10.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系中,抛物线的顶点为.直线过点,且平行于轴,与抛物线交于两点(在的右侧).将抛物线沿直线翻折得到抛物线,抛物线交轴于点,顶点为.
(1)当时,求点的坐标;
(2)连接,若为直角三角形,求此时所对应的函数表达式;
(3)在(2)的条件下,若的面积为两点分别在边上运动,且,以为一边作正方形,连接,写出长度的最小值,并简要说明理由.
…
0
1
2
3
…
…
1
1
…
第06讲 二次函数的图象与性质(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用): 这是一份第06讲 二次函数的图象与性质(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用),文件包含第六讲二次函数的图象与性质考点精析+真题精讲原卷版docx、第六讲二次函数的图象与性质考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
第05讲 反比例函数(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用): 这是一份第05讲 反比例函数(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用),文件包含第五讲反比例函数考点精析+真题精讲原卷版docx、第五讲反比例函数考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
第01讲 平面直角坐标系(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用): 这是一份第01讲 平面直角坐标系(考点精析+真题精讲)-备战2024年中考数学一轮复习考点研究(全国通用),文件包含第一讲平面直角坐标系考点精析+真题精讲原卷版docx、第一讲平面直角坐标系考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。