|试卷下载
搜索
    上传资料 赚现金
    【中考特训】贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析)
    立即下载
    加入资料篮
    【中考特训】贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析)01
    【中考特训】贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析)02
    【中考特训】贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析)03
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【中考特训】贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析)

    展开
    这是一份【中考特训】贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析),共33页。试卷主要包含了如图,下列条件中不能判定的是,如图,,下列语句中,不正确的是等内容,欢迎下载使用。

    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,①,②,③,④可以判定的条件有( ).
    A.①②④B.①②③C.②③④D.①②③④
    2、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
    A.B.C.D.
    3、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
    A.2 个B.3 个C.4 个D.5 个.
    4、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
    A.B.C.D.
    5、如图,下列条件中不能判定的是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.B.C.D.
    6、如图,在中,D是延长线上一点,,,则的度数为( )
    A.B.C.D.
    7、如图,、是的切线,、是切点,点在上,且,则等于( )
    A.54°B.58°C.64°D.68°
    8、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
    A.75°B.70°C.65°D.55°
    9、下列语句中,不正确的是( )
    A.0是单项式B.多项式的次数是4
    C.的系数是D.的系数和次数都是1
    10、下列图形中,能用,,三种方法表示同一个角的是( )
    A.B.
    C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、和校验码”.
    其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:
    步骤1:计算前12位数字中偶数位数字的和,即;
    步骤2:计算前12位数字中奇数位数字的和,即;
    步骤3:计算与的和,即;
    步骤4:取大于或等于且为10的整数倍的最小数,即中;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    步骤5:计算与的差就是校验码X,即.
    如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是______.
    2、如图,在平面直角坐标系xOy中,P为函数图象上一点,过点P分别作x轴、y轴的垂线,垂足分别为M,N.若矩形PMON的面积为3,则m的值为______.
    3、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
    4、计算:______.
    5、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:),那么最大温差是________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平面直角坐标系中,,,.
    (1)在图中作出关于轴的对称图形,并直接写出点的坐标;
    (2)求的面积;
    (3)点与点关于轴对称,若,直接写出点的坐标.
    2、在平面直角坐标系xOy中,已知点A(1,0)和点B(5,0).对于线段AB和直线AB外的一点C,给出如下定义:点C到线段AB两个端点的连线所构成的夹角∠ACB叫做线段AB关于点C的可视角,其中点C叫做线段AB的可视点.
    (1)在点D(-2,2)、E(1,4)、F(3,-2)中,使得线段AB的可视角为45°的可视点是 ;
    (2)⊙P为经过A,B两点的圆,点M是⊙P上线段AB的一个可视点.
    ① 当AB为⊙P的直径时,线段AB的可视角∠AMB为 度;
    ② 当⊙P的半径为4时,线段AB的可视角∠AMB为 度;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)已知点N为y轴上的一个动点,当线段AB的可视角∠ANB最大时,求点N的坐标.
    3、计算:(x+2)(4x﹣1)+2x(2x﹣1).
    4、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.

    图1 图2
    (1)如图1,求证:;
    (2)如图2,若,,求的值;
    (3)如图1,当,,求时,求的值.
    5、已知:在四边形中,于E,且.
    (1)如图1,求的度数;
    (2)如图2,平分交于F,点G在上,连接,且.求证:;
    (3)如图3,在(2)的条件下,,过点F作,且,若,求线段的长.
    -参考答案-
    一、单选题
    1、A
    【分析】
    根据平行线的判定定理逐个排查即可.
    【详解】
    解:①由于∠1和∠3是同位角,则①可判定;
    ②由于∠2和∠3是内错角,则②可判定;
    ③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
    ④①由于∠2和∠5是同旁内角,则④可判定;
    即①②④可判定.
    故选A.
    【点睛】
    本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
    2、A
    【分析】
    如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
    【详解】
    解:如图:过C作CE⊥OA,垂足为E,
    ∵菱形OABC,
    ∴OC=OA=4
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵,
    ∴∠OCE=30°
    ∵OC=4
    ∴OE=2
    ∴CE=
    ∴点C的坐标为.
    故选A.
    【点睛】
    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
    3、C
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
    (2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
    (3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
    (4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    4、D
    【分析】
    设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
    【详解】
    解:设半径为r,如解图,过点O作,
    ∵OB=OE,
    ∴,
    ∵四边形ABCD为矩形,
    ∴∠C=90°=∠OFB,∠OBF=∠DBC,
    ∴.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    在中,,即,
    又∵为的切线,
    ∴,
    ∴,
    解得或0(不合题意舍去).
    故选D.
    【点睛】
    本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
    5、A
    【分析】
    根据平行线的判定逐个判断即可.
    【详解】
    解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
    ∴∠3=∠5,
    因为”同旁内角互补,两直线平行“,
    所以本选项不能判断AB∥CD;
    B、∵∠3=∠4,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    C、∵,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    D、∵∠1=∠5,
    ∴AB∥CD,
    故本选项能判定AB∥CD;
    故选:A.
    【点睛】
    本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
    6、B
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    根据三角形外角的性质可直接进行求解.
    【详解】
    解:∵,,
    ∴;
    故选B.
    【点睛】
    本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
    7、C
    【分析】
    连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
    【详解】
    解:连接,,如下图:

    ∵PA、PB是的切线,A、B是切点

    ∴由四边形的内角和可得:
    故选C.
    【点睛】
    此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
    8、B
    【分析】
    直接根据圆周角定理求解.
    【详解】
    解:,

    故选:B.
    【点睛】
    本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    9、D
    【分析】
    分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
    【详解】
    解:A、0是单项式,正确,不符合题意;
    B、多项式的次数是4,正确,不符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    C、的系数是,正确,不符合题意;
    D、的系数是-1,次数是1,错误,符合题意,
    故选:D.
    【点睛】
    本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
    10、A
    【分析】
    根据角的表示的性质,对各个选项逐个分析,即可得到答案.
    【详解】
    A选项中,可用,,三种方法表示同一个角;
    B选项中,能用表示,不能用表示;
    C选项中,点A、O、B在一条直线上,
    ∴能用表示,不能用表示;
    D选项中,能用表示,不能用表示;
    故选:A.
    【点睛】
    本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
    二、填空题
    1、4
    【解析】
    【分析】
    设被污染的两个数字中左边的数字为x,则右边的数为5-x,然后根据题中所给算法可进行求解.
    【详解】
    解:设被污染的两个数字中左边的数字为x,则右边的数为5-x,由题意得:



    ∵d为10的整数倍,且,
    ∴或110,
    ∵由图可知校验码为9,
    ∴当时,则有,解得:,则有右边的数为5-1=4;
    当时,则有,解得:,不符合题意,舍去;
    ∴被污染的两个数字中右边的数字是4;
    故答案为4.
    【点睛】
    本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
    2、3
    【解析】
    【分析】
    根据反比例函数的解析式是,设点,根据已知得出,即,求出即可.
    【详解】
    解:设反比例函数的解析式是,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    设点是反比例函数图象上一点,
    矩形的面积为3,

    即,
    故答案为:3.
    【点睛】
    本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.
    3、140
    【解析】
    【分析】
    先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
    【详解】
    解:由题意,可得∠AOB=40°,
    则∠AOB的补角的大小为:180°−∠AOB=140°.
    故答案为:140.
    【点睛】
    本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
    4、-1
    【解析】
    【分析】
    根据有理数减法法则计算即可.
    【详解】
    解:,
    故答案为:-1.
    【点睛】
    本题考查了有理数减法,解题关键是熟记有理数减法法则,准确计算.
    5、15
    【解析】
    【分析】
    通过表格即可求得最高和最低气温,12月3日的温差最大,最大温差为10-(-5)=15℃;
    【详解】
    解:12月1日的温差:
    12月2日的温差:
    12月3日的温差:
    12月4日的温差:
    12月5日的温差:

    最大温差是15,
    故答案为:15.
    【点睛】
    此题考查了正数与负数以及有理数的减法,熟练掌握运算法则是解本题的关键.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    三、解答题
    1、
    (1)见详解;(−2,1);
    (2)8.5;
    (3)P(5,3)或(−1,−3).
    【分析】
    (1)画出△A1B1C1,据图直接写出C1坐标;
    (2)先求出△ABC外接矩形CDEF面积,用之减去三个直角三角形的面积,得△ABC的面积;
    (3)先根据P,Q关于x轴对称,得到Q的坐标,再构建方程求解即可.
    (1)
    解:如图1
    △A1B1C1就是求作的与△ABC关于x轴对称的三角形,点C1的坐标(−2,1);
    (2)
    解:如图2
    由图知矩形CDEF的面积:5×5=25
    △ADC的面积:×4×5=10
    △ABE的面积:×1×3=
    △CBF的面积:×5×2=5
    所以△ABC的面积为:25-10--5=8.5.
    (3)
    解:∵点P(a,a−2)与点Q关于x轴对称,
    ∴Q(a,2−a),
    ∵PQ=6,
    ∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,
    ∴P(5,3)或(−1,−3).
    【点睛】
    本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    2、
    (1)点E
    (2)① 90;② 30或150
    (3)N(0,)或(0,- )
    【分析】
    (1)AE、BE、AB满足勾股定理,且AE=AB,可知为等腰直角三角形,则∠AEB=45°,故E点可使线段AB的可视角为45°.
    (2)①由半径所对的圆周角为90°即可得出∠AMB为90°.
    ②连接AP、BP,即可得出为等边三角形,由圆周角定理即可求得∠AMB为30°或150°.
    (3)以AB为弦作圆M且过点N,由圆周角定理可得出当圆心角AMB最大时,圆周角ANB最大,由直线与圆的位置关系得出当y轴与圆M相切时圆心角AMB最大,进而可求得N点坐标.
    (1)
    连接AE,BE
    ∵AE=4,AB=4,AE⊥AB
    ∴为等腰直角三角形
    ∴∠AEB=45°.
    故使得线段AB的可视角为45°的可视点是点E.
    (2)
    ①有题意可知,此时AB为⊙P直径
    由半径所对的圆周角为90°可知∠AMB为90°
    ②当⊙P的半径为4时,AB为⊙P一条弦,连接AP,BP
    ∵BP=AP=4,AB=4
    ∴为等边三角形
    ∴∠APB=60°
    当点M在圆心一侧由圆周角定理知∠AMB=
    当点M不在圆心一侧由内切四边形性质可知∠AMB=180°-30°=150°
    (3)
    (3)解: ∵过不在同一条直线上的三点确定一个圆,
    ∴A、B、N三点共圆,且过A、B两点的圆有无数个,圆心在直线x=3上.
    即:点N的位置为过A、B两点的圆与y轴的交点.
    设过A、B两点的圆为⊙M,半径为r.
    当r<3时,y轴与⊙M无交点,不符题意舍去.
    如图所示:
    当r=3时,y轴与⊙M交于一点,此时y轴与⊙M相切,切点即为点N.
    当r>3时,y轴与⊙M1交于两点,此时y轴与⊙M1相交,交点设为N1、N2.
    连接AM、BM、AN、BN、AM1、BM1、AN1、BN1.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    此时,∠ANB、∠AMB分别为⊙M中弧AB所对的圆周角和圆心角;
    ∠AN1B、∠AM1B分别为⊙M1中弧AB所对的圆周角和圆心角.
    ∵∠1=∠M1AM+∠AM1M,
    ∠2=∠M1BM+∠BM1M,
    ∴∠1+∠2=∠M1AM+∠AM1M+∠BM1M+∠M1BM,
    即∠AMB=∠M1AM+∠AM1B+∠M1BM
    ∴∠AMB>∠AM1B
    ∴∠ANB>∠AN1B
    ∵∠AN1B=∠AN2B
    ∴∠ANB>∠AN2B
    ∴当y轴与⊙M相切于点N时,∠ANB的值最大.
    在Rt△AMC中,AM=r=3,AC=2
    ∴MC=
    ∵MN⊥y轴,MC⊥AB,
    ∴四边形OCMN为矩形.
    ∴ON=MC=
    ∴N(0,)
    同理,当点N在y轴负半轴时,坐标为(0,- )
    综述所述,N(0,)或(0,-).
    【点睛】
    本题考查了圆周角定理,将可视角的定义转化为圆内弦AB的圆周角是解题的关键,再结合图象计算即可.
    3、
    【分析】
    根据单项式乘以多项式,多项式乘以多项式的法则进行乘法运算,再合并同类项即可.
    【详解】
    解:
    【点睛】
    本题考查的是整式的乘法运算,掌握“单项式乘以多项式与多项式乘以多项式的法则”是解本题的关键.
    4、
    (1)证明见解析
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    (3)
    【分析】
    (1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;
    (2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;
    (3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.
    (1)
    解:∵四边形EFGH是平行四边形


    ∵四边形ABCD是平行四边形


    在和中



    ∴;
    (2)
    解:如图所示,作于M点,设
    ∵四边形和四边形都是平行四边形,
    ∴四边形和四边形都是矩形



    ∴,



    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·


    由(1)得:

    ∴;
    (3)
    解:如图所示,过点E作于M点
    ∵四边形ABCD是平行四边形


    ∴,即










    由(1)得:


    过点E作,交BD于N












    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·




    解得:或(舍去)

    由勾股定理得:
    ∴.
    【点睛】
    此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.
    5、
    (1)120°;
    (2)见解析;
    (3)3.
    【分析】
    (1)取AD的中点F,连接EF,证明△AEF是等边三角形,进而求得∠B;
    (2)作FM⊥BC于M,FN⊥AB于点N,先证明Rt△BFM≌Rt△BFN,再证明Rt△FMG≌Rt△FNA;
    (3)连接AG,DF,DG,作FM⊥BC于M,先证明AF=GF=DF,从而得出∠AGH=∠AFD=30°,进而得出∠DGC=∠DFC=120°,从而得出点G、C、D、F共圆,进而得出CA平分∠BCD,接着可证Rt△FMG≌Rt△FHD,△MCF≌△HCF,进而求得GM=CG=DH=,从而得出BM的值,进而求得BF.
    (1)
    解:如图1,取AD的中点F,连接EF,
    ∵DE⊥AC,
    ∴∠AED=90°,
    ∴AD=2AF=2EF,
    ∵AD=2AE,
    ∴AE=EF=AF,
    ∴∠CAD=60°,
    ∵∠B+∠CAD=180°,
    ∴∠B=120°;
    (2)
    证明:如图2,作FM⊥BC于M,FN⊥AB于点N,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠BMF=∠BNF=90°,∠GMF=∠ANF=90°,
    ∵BF平分∠ABC,
    ∴FM=FN,
    在Rt△BFM和Rt△BFN中,

    ∴Rt△BFM≌Rt△BFN(HL),
    ∴BM=BN,
    在Rt△FMG和Rt△FNA中,

    ∴Rt△FMG≌Rt△FNA(HL),
    ∴MG=NA,
    ∴BN+NA=BM+MG,
    ∴AB=BG.
    (3)
    如图3,
    连接AG,DF,DG,作FM⊥BC于M,延长GF交AD于N,
    ∵AF=AD,∠DAE=60°,
    ∴△ADF是等边三角形,
    ∴∠AFD=60°,AF=DF,
    ∵GF=AF,∠DFC=180°-∠AFD=120°,
    ∴AF=GF=DF,
    ∴∠FGD=∠FDG,∠FAG=∠FGA,
    ∴∠AGD=∠AFN+∠DFN=∠AFD=×60°=30°,
    ∵∠ADC=120°,AD=DG,
    ∴∠DGA=∠DAG==30°,
    ∴∠DGC=180°-∠DGA-∠AGD=180°-30°-30°=120°,
    ∴∠DGC=∠DFC,
    ∵∠1=∠2,
    ∴180°-∠DGC-∠1=180°-∠DFC-∠2,
    ∴∠GCF=∠FDG,∠DCF=∠FGD,
    ∴∠GCF=∠DCF,
    ∵FH⊥CD,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴FM=FH,
    ∵∠FMG=∠FHD=90°,
    ∴Rt△FMG≌Rt△FHD(HL),
    ∴DH=MG,
    同理可得:△MCF≌△HCF(HL),
    ∴CM=CH=2CG,
    ∴GM=CG=DH,
    ∴3CG=CD=,
    ∴GM=CG=,
    ∴BM=BG-GM=AB-GM=5-=,
    在Rt△BFM中,∠BFM=90°-∠FBM=90°-60°=30°,
    ∴BF=2BM=3.
    【点睛】
    本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质等知识,解决问题的关键是正确作出辅助线.
    相关试卷

    备考特训贵州省铜仁市中考数学历年模拟汇总 (A)卷(含详解): 这是一份备考特训贵州省铜仁市中考数学历年模拟汇总 (A)卷(含详解),共28页。试卷主要包含了下列现象等内容,欢迎下载使用。

    中考专题贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含详解): 这是一份中考专题贵州省铜仁市中考数学历年真题汇总 卷(Ⅲ)(含详解),共29页。

    中考数学贵州省中考数学历年真题汇总 卷(Ⅲ)(含答案解析): 这是一份中考数学贵州省中考数学历年真题汇总 卷(Ⅲ)(含答案解析),共26页。试卷主要包含了下列计算中,正确的是,下列方程变形不正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map