最新中考数学压轴大题之经典模型 专题03 对角互补模型-【压轴必刷】
展开今天整理了初三中考总复习阶段在教学过程中收集的经典题目,一共有31讲,包括原卷版和解析版,供大家学习复习参考。
经典题目1:这是一道非常经典的最值问题,最值模型将军饮马和一箭穿心。
经典题目2:上面三道题是费马点经典问题,旋转转化是费马点问题的关键。
经典题目3:阿氏圆经典题目,这道题目实际包括了隐圆模型,一箭穿心模型等常见几何模型。
经典题目4:这是中考出现频率比较高的胡不归问题,也是经典最值问题。
【压轴必刷】2023年中考数学压轴大题之经典模型培优案
专题3对角互补模型
解题策略
模型1:全等形——90°对角互补模型
模型2:全等形——120°对角互补模型
模型3:全等形——任意角对角互补模型
模型4:相似形——90°对角互补模型
经典例题
【例1】.(2021·全国·九年级专题练习)如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.
【例2】.(2019·山东枣庄·中考真题)在ΔABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;
(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;
(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN=2AM;
【例3】.(2022·江苏·八年级课时练习)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD.请直接写出线段EF,BE,FD之间的数量关系:__________;
(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?请写出证明过程;
(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=12∠BAD.请画出图形(除图②外),并直接写出线段EF,BE,FD之间的数量关系.
【例4】.(2022·全国·八年级课时练习)四边形ABCD是由等边ΔABC和顶角为120°的等腰ΔABD排成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°交两边分别交直线BC、AC于M、N,交直线AB于E、F两点.
(1)当E、F都在线段AB上时(如图1),请证明:BM+AN=MN;
(2)当点E在边BA的延长线上时(如图2),请你写出线段MB,AN和MN之间的数量关系,并证明你的结论;
(3)在(1)的条件下,若AC=7,AE=2.1,请直接写出MB的长为 .
培优训练
一、解答题
1.(2022·陕西·西安市第三中学七年级期末)回答问题
(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.
小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;
(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;
(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.
2.(2021·陕西·交大附中分校八年级开学考试)问题探究
((1)如图①,已知∠A=45°,∠ABC=30°,∠ADC=40°,则∠BCD的大小为___________;
(2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6.求四边形ABCD的面积;小明这样来计算.延长DC,使得CE=AD,连接BE,通过证明△ABD≌△CBE,从而可以计算四边形ABCD的面积.请你将小明的方法完善.并计算四边形ABCD的面积;
问题解决
(3)如图③,四边形ABCD是正在建设的城市花园,其中AB=BC,∠ABC=60°,∠ADC=30°,DC=40米,AD=30米.请计算出对角线BD的长度.
3.(2021·福建三明·八年级期中)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.判断DB与DC的大小关系并证明.
探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB与DC的大小关系变吗?请说明理由.
应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=m,则AB与AC差是多少(用含m的代数式表示)
4.(2021·辽宁大连·九年级期中)如图1,正方形ABCD中,BD是对角线,点E在AB上,点F在BC上,连接EF(EF与BD不垂直),点G是线段EF的中点,过点G作GH⊥EF交线段BD于点H.
(1)猜想GH与EF的数量关系,并证明;
(2)探索AE,CF,DH之间的数量关系,并证明;
(3)如图2,若点E在AB的延长线上,点F在BC的延长线上,其他条件不变,请直接写出AE,CF,DH之间的数量关系.
5.(2020·河南洛阳·八年级期中)在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.
(1)如图1,若∠BED=∠CFD,请说明DE=DF;
(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.
6.(2020·江西萍乡·八年级期末)【课题研究】旋转图形中对应线段所在直线的夹角(小于等于90°的角)与旋转角的关系.
【问题初探】线段AB绕点O顺时针旋转得到线段CD,其中点A与点C对应,点B与点D对应,旋转角的度数为α,且0°<α<180°.
(1)如图①,当α=60°时,线段AB、CD所在直线夹角(锐角)为 ;
(2)如图②,当90°<α<180°时,直线AB与直线CD所夹锐角与旋转角α存在怎样的数量关系?请说明理由;
【形成结论】旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角 .
【运用拓广】运用所形成的结论解决问题:
(3)如图③,四边形ABCD中,∠ABC=60°,∠ADC=30°,AB=BC,CD=3,BD=19,求AD的长.
7.(2021··九年级专题练习)如图,在△ABC中,∠ACB=120°,BC>AC,点E在BC上,点D在AB上,CE=CA,连接DE,∠ACB+∠ADE=180°,CH⊥AB,垂足为H.证明:DE+AD=23CH.
8.(2020·湖南湘西·中考真题)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFC≌△BFE,可得出结论,他的结论就是_______________;
探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由.
探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由.
实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且指挥中心观测两舰艇视线之间的夹角为70°,试求此时两舰艇之间的距离.
9.(2019·重庆·西南大学附中八年级阶段练习)如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE=BC,CE⊥BD,CE=ED
(1)已知AB=10,AD=6,求CD;
(2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB于H,∠BGH=75°.求证:BF=22GH+2EG.
10.(2021·全国·九年级专题练习)探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠BAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴ ∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.
∵ ∠EAF=45°∴ ∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵ ∠1=∠2,∠1+∠3=45°.
即∠GAF=∠________.
又AG=AE,AF=AE
∴ △GAF≌△________.
∴ _________=EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
11.(2021·全国·八年级专题练习)我们规定:一组邻边相等且对角互补的四边形叫作“完美四边形”.
(1)在①平行四边形,②菱形,③矩形,④正方形中,一定为“完美”四边形的是 (请填序号);
(2)在“完美”四边形ABCD中,AB=AD,∠B+∠D=180°,连接AC.
①如图1,求证:AC平分∠BCD;
小明通过观察、实验,提出以下两种想法,证明AC平分∠BCD:
想法一:通过∠B+∠D=180°,可延长CB到E,使BE=CD,通过证明△AEB≌△ACD,从而可证AC平分∠BCD;
想法二:通过AB=AD,可将△ACD绕点A顺时针旋转,使AD与AB重合,得到△AEB,可证C,B,E三点在条直线上,从而可证AC平分∠BCD.
请你参考上面的想法,帮助小明证明AC平分∠BCD;
②如图2,当∠BAD=90°,用等式表示线段AC,BC,CD之间的数量关系,并证明.
12.(2019·全国·九年级专题练习)如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.
(1)当DF⊥AC时,求证:BE=CF;
(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由
13.(2022·全国·八年级专题练习)如图所示,ΔABC为等边三角形,边长为4,点O为BC边中点,∠EOF=120°,其两边分别交AB和CA的延长线于E,F,求AE−AF的值.
14.(2019·全国·九年级专题练习)如图所示,ΔABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DF,长直角边为DE),将三角板DEF绕D点按逆时针方向旋转.
(1)在如图所见中,DE交AB于M,DF交BC于N,证明DM=DN;
(2)继续旋转至如图所见,延长AB交DE于M,延长BC交DF于N,证明DM=DN.
15.(2019·江西·南昌市第十九中学九年级阶段练习)一位同学拿了两块45°三角尺ΔMNK,ΔACB做了一个探究活动:将ΔMNK的直角顶点M放在ΔACB的斜边AB的中点处,设AC=BC=4.
(1)如图1所示,两三角尺的重叠部分为ΔACM,则重叠部分的面积为______,周长为______.
(2)将如图1所示中的ΔMNK绕顶点M逆时针旋转45°,得到如图2所示,此时重叠部分的面积为______,周长为______.
(3)如果将ΔMNK绕M旋转到不同于如图1所示和如图2所示的图形,如图3所示,请你猜想此时重叠部分的面积为______.
(4)在如图3所示情况下,若AD=1,求出重叠部分图形的周长.
16.(2019·江苏常州·一模)我们定义:有一组对角为直角的四边形叫做“对直角四边形”.
(1)如图①,四边形ABCD为对直角四边形,∠B=90°,若AB2-AD2=4,求CD2-BC2的值;
(2)如图②,四边形ABCD中,∠ABC=90°,AB=BC,若BD平分∠ADC,求证:四边形ABCD为对直角四边形;
(3)在(2)的条件下,如图③,连结AC,若S△ACDS△ABC=35,求tan∠ACD的值.
17.(2021·全国·九年级专题练习)阅读下面材料:
小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).
参考小炎同学思考问题的方法,解决下列问题:
(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;
(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.
18.(2021·全国·八年级专题练习)已知:∠ABC=∠ADC=90°,AD=DC,求证:BC+AB=2BD.
最新中考数学压轴大题之经典模型 专题01 共顶点模型-【压轴必刷】: 这是一份最新中考数学压轴大题之经典模型 专题01 共顶点模型-【压轴必刷】,文件包含专题1共顶点模型-压轴必刷2023年中考数学压轴大题之经典模型培优案全国通用原卷版docx、专题1共顶点模型-压轴必刷2023年中考数学压轴大题之经典模型培优案全国通用解析版docx等2份试卷配套教学资源,其中试卷共110页, 欢迎下载使用。
专题03 对角互补模型-中考数学压轴大题之经典模型培优案(全国通用): 这是一份专题03 对角互补模型-中考数学压轴大题之经典模型培优案(全国通用),文件包含专题3对角互补模型-中考数学压轴大题之经典模型培优案全国通用解析版docx、专题3对角互补模型-中考数学压轴大题之经典模型培优案全国通用原卷版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。
专题03 对角互补模型-中考数学压轴大题之经典模型培优案(全国通用): 这是一份专题03 对角互补模型-中考数学压轴大题之经典模型培优案(全国通用),文件包含02形容词与副词-高考英语二轮复习讲义+分层训练全国通用docx、01形容词与副词-高考英语二轮复习讲义+分层训练全国通用pptx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。