备战中考数学《重难点解读•专项训练》专题03 平行线四大模型(知识解读)
展开一、复习方法
1.以专题复习为主。 2.重视方法思维的训练。
3.拓宽思维的广度,培养多角度、多维度思考问题的习惯。
二、复习难点
1.专题的选择要准,安排时间要合理。 2.专项复习要以题带知识。
3.在复习的过程中要兼顾基础,在此基础上适当增加变式和难度,提高能力。
专题03 平行线四大模型(知识解读)
【专题说明】
历年中考考试中,有不少题目都考查了平行线的性质及应用,现汲取四大模型,供同学们赏析,希望能到达指导学习之目的。
【方法技巧】
结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°
结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.
结论1:若AB∥CD,则∠P=∠AEP+∠CFP;
结论2:若∠P=∠AEP+∠CFP,则AB∥CD.
结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;
结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.
结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;
结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.
【典例分析】
【模型1 “铅笔”模型】
【典例1】如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )
A.360°B.300°C.270°D.180°
【变式1-1】把一块等腰直角三角尺和直尺按如图所示的方式放置,若∠1=32°,则∠2的度数为( )
A.20°B.18°C.15°D.13°
【典例2】问题情境:
(1)如图1,AB∥CD,∠BAP=120°,∠PCD=130°,求∠APC的度数.
(提示:如图2,过P作PE∥AB)问题迁移:
(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=α,∠PCB=β,α、β、∠DPC之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出α、β、∠DPC之间的数量关系.(提示:三角形内角和为180°)
【变式2-1】已知,AB∥CD,试解决下列问题:
(1)如图1,∠1+∠2= ;
(2)如图2,∠1+∠2+∠3= ;
(3)如图3,∠1+∠2+∠3+∠4= ;
(4)如图4,试探究∠1+∠2+∠3+∠4+…+∠n= .
【变式2-2】如图,已知BQ∥GE,AF∥DE,∠1=50°.
(1)求∠AFG的度数;
(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.
【模型2 “猪蹄”模型(M模型)】
【典例3】【问题背景】同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.
【问题解决】(1)如图1,AB∥CD,E为AB、CD之间一点,连接AE、CE.若∠A=42°,∠C=28°.则∠AEC= .
【问题探究】(2)如图2,AB∥CD,线段AD与线段BC交于点E,∠A=36°,∠C=54°,EF平分∠BED,求∠BEF的度数.
【问题拓展】(3)如图3.AB∥CD,线段AD与线段BC相交于点G,∠BCD=56°,∠GDE=20°,过点D作DF∥CB交直线AB于点F,AE平分∠BAD,DG平分∠CDF,求∠AED的度数.
【变式3-1】如图所示是汽车灯的剖面图,从位于O点灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60°,则∠BOC的度数为( )
A.180°﹣αB.120°﹣αC.60°+αD.60°﹣α
【变式3-2】学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.
(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系,小明过点P作l1的平行线,可得∠APB,∠A,∠B之间的数量关系是:∠APB= .
(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程.
【变式3-3】平面内的两条直线有相交和平行两种位置关系.
(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明);
(3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E的度数.
【模型3“锯齿”模型】
【典例4】如图,点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.
求证:∠E=∠F.
【变式4-1】2022北京冬奥会掀起了滑雪的热潮,很多同学纷纷来到滑雪场,想亲身感受一下奥运健儿在赛场上风驰电掣的感觉,但是第一次走进滑雪场的你,学会正确的滑雪姿势是最重要的,正确的滑雪姿势是上身挺直略前倾,与小腿平行,使脚的根部处于微微受力的状态,如图所示,AB∥CD,如果人的小腿CD与地面的夹角∠CDE=60°,你能求出身体BA与水平线的夹角∠BAF的度数吗?若能,请你用两种不同的方法求出∠BAF的度数.
【变式4-2】如图已知:∠1=∠2,请再添加一个条件,使AB∥CD成立,并写出证明过程.
【变式4-3】如图(a),已知∠BAG+∠AGD=180°,AF、EF、EG是三条折线段.
(1)若∠E=∠F,如图(b)所示,求证:∠1=∠2;
(2)根据图(a),写出∠1+∠E与∠2+∠F之间的关系,不需证明.
专题03 平行线四大模型(知识解读)
【专题说明】
历年中考考试中,有不少题目都考查了平行线的性质及应用,现汲取四大模型,供同学们赏析,希望能到达指导学习之目的。
【方法技巧】
结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°
结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.
结论1:若AB∥CD,则∠P=∠AEP+∠CFP;
结论2:若∠P=∠AEP+∠CFP,则AB∥CD.
结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;
结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD
结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;
结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.
【典例分析】
【模型1 “铅笔”模型】
【典例1】如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )
A.360°B.300°C.270°D.180°
【答案】A
【解答】解:如图,过点P作PA∥a,则a∥b∥PA,
∴∠3+∠NPA=180°,∠1+∠MPA=180°,
∴∠1+∠2+∠3=180°+180°=360°.
故选:A.
【变式1-1】把一块等腰直角三角尺和直尺按如图所示的方式放置,若∠1=32°,则∠2的度数为( )
A.20°B.18°C.15°D.13°
【答案】D
【解答】解:如图,过点O作OP∥AB,则OP∥AB∥CD,
∴∠1=∠3,∠2=∠4,
∵∠3+∠4=45°,
∴∠1+∠2=45°,
∴∠2=45°﹣∠1=45°﹣32°=13°.
故选:D.
【典例2】问题情境:
(1)如图1,AB∥CD,∠BAP=120°,∠PCD=130°,求∠APC的度数.
(提示:如图2,过P作PE∥AB)问题迁移:
(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=α,∠PCB=β,α、β、∠DPC之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出α、β、∠DPC之间的数量关系.(提示:三角形内角和为180°)
【解答】解:(1)∵AB∥CD,∠PAB=120°,∠PCD=130°,
∴∠PAB+∠APE=180°,∠EPC+∠C=180°,
∴∠APE=180°﹣120°=60°,∠EPC=180°﹣130°=50°,
∴∠APC=∠APE+∠EPC=60°+50°=110°;
(2)∠CPD=∠α+∠β,
理由如下:如图3,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β;
(3)①当P在OA延长线时,∠CPD=∠β﹣∠α;
②当P在AB延长线时,∠CPD=∠α﹣∠β,
①当P在OA延长线时,∠CPD=∠β﹣∠α;
理由:如图4,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;
②当P在AB延长线时,∠CPD=∠α﹣∠β,
理由:如图5,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.
【变式2-1】已知,AB∥CD,试解决下列问题:
(1)如图1,∠1+∠2= ;
(2)如图2,∠1+∠2+∠3= ;
(3)如图3,∠1+∠2+∠3+∠4= ;
(4)如图4,试探究∠1+∠2+∠3+∠4+…+∠n= .
【解答】
解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);
(2)过点E作一条直线EF∥AB,
∵AB∥CD,
∴CD∥EF,
∴∠1+∠AEF=180°,∠FEC+∠3=180°,
∴∠1+∠2+∠3=360°;
(3)过点E、F作EG、FH平行于AB,
∵AB∥CD,
∴AB∥EG∥FH∥CD,
∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;
∴∠1+∠2+∠3+∠4=540°;
(4)根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).
【变式2-2】如图,已知BQ∥GE,AF∥DE,∠1=50°.
(1)求∠AFG的度数;
(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.
【解答】解:(1)∵BQ∥GE,∠1=50°,
∴∠E=∠1=50°,
∵AF∥DE,
∴∠AFG=∠E=50°;
(2)过点A作AM∥BQ,
由(1)得∠AFG=∠E=50°,
∵BQ∥GE,
∴AM∥BQ∥GE,
∴∠FAM=∠AFG=50°,∠MAQ=∠Q=15°,
∴∠FAQ=∠FAM+∠MAQ=65°,
∵AQ平分∠FAC,
∴∠QAC=∠FAQ=65°,
∴∠MAC=∠QAC+∠MAQ=80°,
∵AM∥BQ,
∴∠ACB=∠MAC=80°.
【模型2 “猪蹄”模型(M模型)】
【典例3】【问题背景】同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.
【问题解决】(1)如图1,AB∥CD,E为AB、CD之间一点,连接AE、CE.若∠A=42°,∠C=28°.则∠AEC= .
【问题探究】(2)如图2,AB∥CD,线段AD与线段BC交于点E,∠A=36°,∠C=54°,EF平分∠BED,求∠BEF的度数.
【问题拓展】(3)如图3.AB∥CD,线段AD与线段BC相交于点G,∠BCD=56°,∠GDE=20°,过点D作DF∥CB交直线AB于点F,AE平分∠BAD,DG平分∠CDF,求∠AED的度数.
【解答】解:(1)延长CE交AB于点F,
∵AB∥CD,
∴∠AFC=∠C=28°,
∵∠AEC是△AEF的一个外角,
∴∠AEC=∠A+∠AFC=∠A+∠C=70°,
故答案为:70°;
(2)利用(1)的结论可得:
∠AEC=∠A+∠C=36°+54°=90°,
∴∠AEC=∠BED=90°,
∵EF平分∠BED,
∴∠BEF=∠BED=45°,
∴∠BEF的度数为45°;
(3)∵BC∥DF,
∴∠CDF=180°﹣∠BCD=124°,
∵DG平分∠CDF,
∴∠CDG=∠CDF=62°,
∵AB∥CD,
∴∠BAG=∠CDG=62°,
∵AE平分∠BAD,
∴∠BAE=∠BAD=31°,
∵∠GDE=20°,
∴∠EDH=180°﹣∠CDG﹣∠GDE=98°,
利用(1)的结论可得:
∠AED=∠BAE+∠EDH=31°+98°=129°,
∴∠AED的度数为129°.
【变式3-1】如图所示是汽车灯的剖面图,从位于O点灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60°,则∠BOC的度数为( )
A.180°﹣αB.120°﹣αC.60°+αD.60°﹣α
【答案】C
【解答】解:连接BC,
∵AB∥CD,
∴∠ABO+∠CBO+∠BCO+∠OCD=180°,
而∠CBO+∠BCO+∠O=180°,
∴∠O=∠ABO+∠DCO=60°+α.
故选:C.
【变式3-2】学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.
(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系,小明过点P作l1的平行线,可得∠APB,∠A,∠B之间的数量关系是:∠APB= .
(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程.
【解答】解:(1)∵记过点P作l1的平行线为PC,
∵PC∥l1,
∴∠A=∠APC,
∵l1∥l2,
∴PC∥l2,
∴∠B=∠BPC,
∴∠APB=∠APC+∠BPC=∠A+∠B,
故答案为:∠APB=∠A+∠B;
(2)发生变化,
如图,过点PF∥AC,则∠APF=∠A,
∵AC∥BD,
∴PF∥BD,
∴∠B=∠BPF,
∴∠APB=∠BPF﹣∠APF=∠B﹣∠A.
【变式3-3】平面内的两条直线有相交和平行两种位置关系.
(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明);
(3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E的度数.
【解答】解:(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD,
∴∠B=∠BED,
又∵∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D;
(2)结论:∠BPD=∠BQD+∠B+∠D.
连接QP并延长,
∵∠BPE是△BPQ的外角,∠DPE是△PDQ的外角,
∴∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,
∴∠BPE+∠DPE=∠B+∠D+∠BQE+∠DQP,即∠BPD=∠BQD+∠B+∠D;
(3)由(2)的结论得:∠AFG=∠B+∠E.∠AGF=∠C+∠D.
又∵∠A+∠AFG+∠AGF=180°
∴∠A+∠B+∠C+∠D+∠E=180°.
(或由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,
∴∠A+∠B+∠C+∠D+∠E=180°.
【模型3“锯齿”模型】
【典例4】如图,点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.
求证:∠E=∠F.
【解答】证明:∵∠BAP+∠APD=180°(已知),
∴AB∥CD(同旁内角互补,两直线平行),
∴∠BAP=∠APC(两直线平行,内错角相等),
又∵∠1=∠2(已知),
∠3=∠BAP﹣∠1,
∠4=∠APC﹣∠2,
∴∠3=∠4(等式的性质),
∴AE∥PF(内错角相等,两直线平行),
∴∠E=∠F(两直线平行,内错角相等).
【变式4-1】2022北京冬奥会掀起了滑雪的热潮,很多同学纷纷来到滑雪场,想亲身感受一下奥运健儿在赛场上风驰电掣的感觉,但是第一次走进滑雪场的你,学会正确的滑雪姿势是最重要的,正确的滑雪姿势是上身挺直略前倾,与小腿平行,使脚的根部处于微微受力的状态,如图所示,AB∥CD,如果人的小腿CD与地面的夹角∠CDE=60°,你能求出身体BA与水平线的夹角∠BAF的度数吗?若能,请你用两种不同的方法求出∠BAF的度数.
【解答】解:方法一:延长AB交直线DE于点G,
∵AG∥CD,
∴∠CDE=∠AGE=60°,
∵AF∥DE,
∴∠BAF=∠AGE=60°;
方法二:过点B作BM∥AF,过点C作CN∥ED,
∴∠BAF=∠3,∠CDE=∠4=60°,
∵AF∥DE,
∴BM∥CN,
∴∠1=∠2,
∵AB∥CD,
∴∠ABC=∠BCD,
∴∠ABC﹣∠1=∠BCD﹣∠2,
∴∠3=∠4,
∴∠BAF=∠CDE=60°.
∴∠BAF的度数为60°.
【变式4-2】如图已知:∠1=∠2,请再添加一个条件,使AB∥CD成立,并写出证明过程.
【解答】解:添加∠E=∠F,
证明过程如下:
∵∠E=∠F,
∴AE∥DF,
∴∠EAD=∠FDA,
∵∠1=∠2,
∴∠BAD=∠CDA,
∴AB∥CD.
【变式4-3】如图(a),已知∠BAG+∠AGD=180°,AF、EF、EG是三条折线段.
(1)若∠E=∠F,如图(b)所示,求证:∠1=∠2;
(2)根据图(a),写出∠1+∠E与∠2+∠F之间的关系,不需证明.
【解答】解:(1)∵∠BAG+∠AGD=180°,
∴AB∥CD,
∴∠BAG=∠AGC,
∵∠E=∠F,
∴AF∥EG,
∴∠FAG=∠AGE,
∴∠BAG﹣∠FAG=∠AGC﹣∠AGE
∴∠1=∠2,
(2)由(1)可知:AB∥CD,
∴∠1+∠GAF=∠2+∠EGA,
∵∠E+∠EGA=∠F+∠GAF,
∴上述两式相加得:∴∠1+∠GAF+∠E+∠EGA=∠2+∠EGA+∠F+∠GAF
∴∠1+∠E=∠2+∠F;
模型一“铅笔”模型
点P在EF右侧,在AB、 CD内部
“铅笔”模型
模型二“猪蹄”模型(M模型)
点P在EF左侧,在AB、 CD内部
“猪蹄”模型
模型三“臭脚”模型
点P在EF右侧,在AB、 CD外部
“臭脚”模型
模型四“骨折”模型
点P在EF左侧,在AB、 CD外部
·
“骨折”模型
模型一“铅笔”模型
点P在EF右侧,在AB、 CD内部
“铅笔”模型
模型二“猪蹄”模型(M模型)
点P在EF左侧,在AB、 CD内部
“猪蹄”模型
模型三“臭脚”模型
点P在EF右侧,在AB、 CD外部
“臭脚”模型
模型四“骨折”模型
点P在EF左侧,在AB、 CD外部
·
“骨折”模型
备战中考数学《重难点解读•专项训练》专题06 半角模型综合应用(知识解读): 这是一份备战中考数学《重难点解读•专项训练》专题06 半角模型综合应用(知识解读),共32页。试卷主要包含了复习方法,复习难点等内容,欢迎下载使用。
备战中考数学《重难点解读•专项训练》专题03 平行线四大模型(专项训练): 这是一份备战中考数学《重难点解读•专项训练》专题03 平行线四大模型(专项训练),文件包含专题03平行线四大模型专项训练原卷版docx、专题03平行线四大模型专项训练解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
备战中考数学《重难点解读•专项训练》专题03 平行线四大模型(能力提升): 这是一份备战中考数学《重难点解读•专项训练》专题03 平行线四大模型(能力提升),文件包含专题03平行线四大模型能力提升原卷版docx、专题03平行线四大模型能力提升解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。