最新中考数学重难点与压轴题型训练(讲义) 专题06 填空题中之分类讨论思想(重点突围)
展开一、复习方法
1.以专题复习为主。 2.重视方法思维的训练。
3.拓宽思维的广度,培养多角度、多维度思考问题的习惯。
二、复习难点
1.专题的选择要准,安排时间要合理。 2.专项复习要以题带知识。
3.在复习的过程中要兼顾基础,在此基础上适当增加变式和难度,提高能力。
专题06 填空题中之分类讨论思想
【中考考向导航】
目录
TOC \ "1-3" \h \u \l "_Tc30989" 【直击中考】 PAGEREF _Tc30989 \h 1
\l "_Tc28203" 【考向一 与等腰三角形有关的分类讨论问题】 PAGEREF _Tc28203 \h 1
\l "_Tc24207" 【考向二 与直角三角形有关的分类讨论问题】 PAGEREF _Tc24207 \h 7
\l "_Tc12376" 【考向三 与矩形有关的分类讨论问题】 PAGEREF _Tc12376 \h 10
\l "_Tc23442" 【考向四 与菱形有关的分类讨论问题】 PAGEREF _Tc23442 \h 18
\l "_Tc7123" 【考向五 与正方形有关的分类讨论问题】 PAGEREF _Tc7123 \h 23
\l "_Tc27182" 【考向六 与圆的分类讨论问题】 PAGEREF _Tc27182 \h 28
\l "_Tc4850" 【考向七 与相似有关的分类讨论问题】 PAGEREF _Tc4850 \h 33
【直击中考】
【考向一 与等腰三角形有关的分类讨论问题】
例题:(2022·四川广安·统考中考真题)若(a﹣3)2+=0,则以a、b为边长的等腰三角形的周长为________.
【变式训练】
1.(2022·辽宁朝阳·统考中考真题)等边三角形ABC中,D是边BC上的一点,BD=2CD,以AD为边作等边三角形ADE,连接CE.若CE=2,则等边三角形ABC的边长为_____.
2.(2022·内蒙古通辽·统考中考真题)在中,,有一个锐角为,,若点在直线上(不与点,重合),且,则的长为_______.
3.(2022·浙江绍兴·统考中考真题)如图,在中,,,以点为圆心,长为半径作弧,交射线于点,连接,则的度数是______.
4.(2022·青海西宁·统考中考真题)矩形ABCD中,,,点E在AB边上,.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是________.
5.(2022·江西·统考中考真题)已知点A在反比例函数的图象上,点B在x轴正半轴上,若为等腰三角形,且腰长为5,则的长为__________.
【考向二 与直角三角形有关的分类讨论问题】
例题:(2022·黑龙江哈尔滨·统考中考真题)在中,为边上的高,,,则是___________度.
【变式训练】
1.(2022·辽宁抚顺·统考中考真题)如图,在中,,点P为斜边上的一个动点(点P不与点A.B重合),过点P作,垂足分别为点D和点E,连接交于点Q,连接,当为直角三角形时,的长是_____________
2.(2022·河南·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.
【考向三 与矩形有关的分类讨论问题】
例题:(2022·辽宁锦州·中考真题)如图,四边形为矩形,,点E为边上一点,将沿翻折,点C的对应点为点F,过点F作的平行线交于点G,交直线于点H.若点G是边的三等分点,则的长是____________.
【变式训练】
1.(2022·辽宁盘锦·中考真题)如图,四边形ABCD为矩形,AB=3,AD=4,AC,BD为矩形的对角线,E是AD边的中点,点F是CD上一点,连接EF,将△DEF沿EF折叠,当点G落在矩形对角线上时,则折痕EF的长是 _____.
2.(2022·黑龙江绥化·统考中考真题)在长为2,宽为x()的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x的值为________.
3.(2022·辽宁沈阳·统考中考真题)如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别在E,F且点F在矩形内部,MF的延长线交BC与点G,EF交边BC于点H.,,当点H为GN三等分点时,MD的长为______.
4.(2022·黑龙江·统考中考真题)在矩形ABCD中,,,点E在边CD上,且,点P是直线BC上的一个动点.若是直角三角形,则BP的长为________.
【考向四 与菱形有关的分类讨论问题】
例题:(2022秋·广东梅州·九年级校考阶段练习)如图,已知在菱形中,,,点是上的一个动点,过点作交于点,交于点,将沿折叠,使点落在点处,当是直角三角形时,的长为____.
【变式训练】
1.(2022秋·浙江金华·九年级义乌市绣湖中学教育集团校联考期中)已知,抛物线上有两点,,将抛物线沿水平方向平移,平移后点A的对应点为,点B的对应点为,且四边形刚好为菱形,那么平移后的抛物线的顶点坐标为 _____.
2.(2022·河南信阳·校考一模)如图,在菱形中,,,点为线段上一动点,过点作交于点,沿将折叠,点的对称点为点,连接、、,当为等腰三角形时,的长为______.
3.(2022秋·广东梅州·九年级校考阶段练习)在矩形 中,,,点 , 在直线 上,且四边形 为菱形,若线段 的中点为点 ,则线段 的长为____.
【考向五 与正方形有关的分类讨论问题】
例题:(2022秋·浙江绍兴·九年级统考期中)正方形中,E,F分别是,上的点,连结交对角线于点G,若恰好平分,,则的值为______.
【变式训练】
1.(2022秋·山东日照·九年级校考期末)等腰,,,正方形的两个顶点在的一边上,另两个顶点在的另两边上,则正方形的边长为____________.
2.(2022秋·江西宜春·九年级校考期中)在平面直角坐标系中,正方形的在轴正半轴上,边在第一象限,且,.将正方形绕点顺时针旋转,若点对应点恰好落在坐标轴上,则点的对应点的坐标为___________.
3.(2021秋·北京东城·九年级校考期末)如图,正方形的面积为3,点是边上一点,,将线段绕点旋转,使点落在直线上,落点记为,则的长为______.
【考向六 与圆的分类讨论问题】
例题:(2022秋·江苏宿迁·九年级统考期中)如图,将一块三角板放置在中,点A、B在圆上,为直角,,点为上一点,则的度数是 _____.
【变式训练】
1.(2021秋·浙江湖州·九年级统考期末)在中,弦和弦(,都不是直径)构成的,M,N分别是和的中点,则的度数为_______.
2.(2022秋·辽宁葫芦岛·九年级校考阶段练习)已知 是的两条平行弦,,的半径为13,则弦与的距离为 _____.
3.(2023秋·浙江宁波·九年级宁波市第七中学校考期末)已知半径为1,是的一条弦,且,则弦所对的圆周角度数是______.
4.(2022秋·江苏南京·九年级南京市科利华中学校考期中)已知点到上各点的最大距离为,最小距离为,则的半径为___________.
【考向七 与相似有关的分类讨论问题】
例题:(2022秋·河南南阳·九年级统考期中)如图,正方形的边长为8,,,线段的两端在、上滑动,当______时,与相似.
【变式训练】
1.(2022秋·四川成都·九年级成都七中校考期中)已知点P是直线上一点,且,若线段的长为2,则线段的长为______.
2.(2022秋·辽宁沈阳·九年级统考期末)在平面直角坐标系中,已知点,,与位似,位似中心是原点,且的面积等于面积的,则点对应点的坐标为______.
3.(2023秋·上海·九年级校考期末)在中,,,,点在斜边上,把沿直线翻折,使得点落在同一平面内的点处,当平行的直角边时,的长为______.
4.(2023秋·四川成都·九年级统考期末)如图,中,,,点为中点.点在右侧,,且,射线交于点,若为等腰三角形,则线段的长为______.
最新中考数学重难点与压轴题型训练(讲义) 专题10 用三角函数解决实际问题(重点突围) 用版): 这是一份最新中考数学重难点与压轴题型训练(讲义) 专题10 用三角函数解决实际问题(重点突围) 用版),文件包含专题10用三角函数解决实际问题重点突围原卷版docx、专题10用三角函数解决实际问题重点突围解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
最新中考数学重难点与压轴题型训练(讲义) 专题09 圆的综合问题(重点突围): 这是一份最新中考数学重难点与压轴题型训练(讲义) 专题09 圆的综合问题(重点突围),文件包含专题09圆的综合问题重点突围原卷版docx、专题09圆的综合问题重点突围解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
最新中考数学重难点与压轴题型训练(讲义) 专题05 统计与概率(重点突围): 这是一份最新中考数学重难点与压轴题型训练(讲义) 专题05 统计与概率(重点突围),文件包含专题05统计与概率原卷版docx、专题05统计与概率解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。