中考数学陕西省汉中市中考数学三年真题模拟 卷(Ⅱ)(含答案及解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,在长方形ABCD中,,,且,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为、.下列结论中正确的是( )
A.B.C.D.不确定
2、如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.B.C.D.
3、下列图标中,轴对称图形的是( )
A.B.C.D.
4、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
5、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
6、下面的图形中,是轴对称图形但不是中心对称图形的是( )
A.B.C.D.
7、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.
C.D.
8、如图,直线AB与CD相交于点O,若,则等于( )
A.40°B.60°C.70°D.80°
9、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
A.B.
C.D.
10、下列运算正确的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
2、如图,小明用一张等腰直角三角形纸片做折纸实验,其中∠C=90°,AC=BC=10,AB=10,点C关于折痕AD的对应点E恰好落在AB边上,小明在折痕AD上任取一点P,则△PEB周长的最小值是___________.
3、如图,两个多边形的面积分别为13和22,两个阴影部分的面积分别为a,,则的值为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、已知抛物线与轴相交于,两点.若线段的长不小于2,则代数式的最小值为_______.
5、在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角△ABC,则点C的坐标为_______.
三、解答题(5小题,每小题10分,共计50分)
1、请根据学习“一次函数”时积累的经验和方研究函数的图象和性质,并解决问题.
(1)填空:
①当x=0时, ;
②当x>0时, ;
③当x<0时, ;
(2)在平面直角坐标系中作出函数的图象;
(3)观察函数图象,写出关于这个函数的两条结论;
(4)进一步探究函数图象发现:
①函数图象与轴有 个交点,方程有 个解;
②方程有 个解;
③若关于的方程无解,则的取值范围是 .
2、(数学概念)如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.
(1)(概念理解)若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;
(2)(概念理解)若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为______(写出所有结果);
(3)(概念应用)如图②,在数轴上,点P表示的数是-6,点A表示的数是-3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.
3、解方程
(1)
(2)
4、计算:.
5、计算:
(1)
(2)
-参考答案-
一、单选题
1、C
【分析】
根据公式,得=,=,判断选择即可.
【详解】
∵=,=,
∴=.
故选C.
【点睛】
本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.
2、C
【分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
【详解】
解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴,解得AD=10,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=CM+MD+CD=AD+.
故选:C.
【点睛】
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
3、A
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:A、是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意;
故选:A
【点睛】
本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
4、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
5、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
6、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
D、是轴对称图形,不是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、D
【分析】
分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:∵,,,
∴BC=,
过CA点作CH⊥AB于H,
∴∠ADE=∠ACB=90°,
∵,
∴CH=4.8,
∴AH=,
当0≤x≤6.4时,如图1,
∵∠A=∠A,∠ADE=∠ACB=90°,
∴△ADE∽△ACB,
∴,即,解得:x=,
∴y=•x•=x2;
当6.4<x≤10时,如图2,
∵∠B=∠B,∠BDE=∠ACB=90°,
∴△BDE∽△BCA,
∴,
即,解得:x=,
∴y=•x•=;
故选:D.
【点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
8、A
【分析】
根据对顶角的性质,可得∠1的度数.
【详解】
解:由对顶角相等,得
∠1=∠2,又∠1+∠2=80°,
∴∠1=40°.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:A.
【点睛】
本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.
9、A
【分析】
整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
【详解】
∵大正方形边长为:,面积为:;
1个小正方形的面积加上4个矩形的面积和为:;
∴.
故选:A.
【点睛】
此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
10、C
【分析】
根据合并同类项法则解答即可.
【详解】
解:A、3x和4y不是同类项,不能合并,故A选项错误;
B、,故B选项错误;
C、,故C选项正确;
D、,故D选项错误,
故选:C.
【点睛】
本题考查合并同类项,熟练掌握合并同类项法则是解答的关键.
二、填空题
1、140
【解析】
【分析】
先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
【详解】
解:由题意,可得∠AOB=40°,
则∠AOB的补角的大小为:180°−∠AOB=140°.
故答案为:140.
【点睛】
本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
2、
【解析】
【分析】
连接CE,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:连接CE,
∵沿AD折叠C和E重合,
∴∠ACD=∠AED=90°,AC=AE=10,∠CAD=∠EAD,
∴BE=10-10,AD垂直平分CE,即C和E关于AD对称,CD=DE,
∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,
∴△PEB的周长的最小值是BC+BE=10+10-10=10.
故答案为:10.
【点睛】
本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,关键是求出P点的位置.
3、9
【解析】
【分析】
由重叠部分面积为c,(b-a)可理解为(b+c)-(a+c),即两个多边形面积的差.
【详解】
解:设重叠部分面积为c, b-a=(b+c)-(a+c)=22-13=9.
故答案为:9.
【点睛】
本题考查了等积变换,添括号,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.
4、-1
【解析】
【分析】
将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.
【详解】
解:
=
=
∴抛物线顶点坐标为(1,-2),在第四象限,
又抛物线与轴相交于A,两点.
∴抛物线开口向上,即
设为A,B两点的横坐标,
∴
∵线段的长不小于2,
∴
∴
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
∴
∴
解得,
设
当时,有最小值,最小值为:
故答案为:-1
【点睛】
本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.
5、
【解析】
【分析】
根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点的坐标
【详解】
解:如图,
当为直角顶点时,则,
作轴,
又
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
同理可得
根据三线合一可得是的中点,则
综上所述,点C的坐标为
故答案为:
【点睛】
本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键.
三、解答题
1、(1)2;-x+2,x+2;(2)见解析;(3)函数图象关于y轴对称;当x=0时,y有最大值2;(4)①2 2;②1;③.
【分析】
(1)利用绝对值的意义,分别代入计算,即可得到答案;
(2)结合(1)的结论,画出分段函数的图像即可;
(3)结合函数图像,归纳出函数的性质即可;
(4)结合函数图像,分别进行计算,即可得到答案;
【详解】
解:(1)①当x=0时,;
②当x>0时,;
③当x<0时,;
故答案为:2;x+2;x+2;
(2)函数y=|x|+2的图象,如图所示:
(3)函数图象关于y轴对称;
当x=0时,y有最大值2.(答案不唯一)
(4)①函数图象与轴有2个交点,方程有2个解;
②方程有1个解;
③若关于的方程无解,则的取值范围是.
故答案为:2;2;1;.
【点睛】
本题考查了一次函数的图像和性质,绝对值的意义,解题的关键是熟练掌握题意,正确的画出图像.
2、
(1)2;
(2)-7或-1或5;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)t的值为或或6或10.
【分析】
(1)由“靠近距离”的定义,可得答案;
(2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A和点B之间时;③当点P在点B右侧时;
(3)分四种情况进行讨论:①当点P在点A左侧,PA
解:∵PA=-2-(-4)=2,PB=2-(-2)=4,PA<PB
∴点P到线段AB的“靠近距离”为:2
故答案为:2;
(2)
∵点A表示的数为-4,点B表示的数为2,
∴点P到线段AB的“靠近距离”为3时,有三种情况:
①当点P在点A左侧时,PA
∴-4-m=3
∴m=-7;
②当点P在点A和点B之间时,
∵PA=m+4,PB=2-m,
如果m+4=3,那么m=-1,此时2-m=3,符合题意;
∴m=-1;
③当点P在点B右侧时,PB<PA,
∵点P到线段AB的“靠近距离”为3,
∴m-2=3,
∴m=5,符合题意;
综上,所求m的值为-7或-1或5.
故答案为-7或-1或5;
(3)
分四种情况进行讨论:①当点P在点A左侧,PA
②当点P在点A右侧,PA
③当点P在点B左侧,PB
④当点P在点B右侧,PB
综上,所求t的值为或或6或10.
【点睛】
本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.
3、
(1)x1=x2=1
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)x1=,x2=3
【分析】
(1)利用配方法解方程;
(2)利用因式分解法解方程.
(1)
解:,
即(x-1)2=0,
∴x1=x2=1.
(2)
解:,
因式分解得:(2x-1)(x-3)=0,
∴2x-1=0或x-3=0,
∴x1=,x2=3.
【点睛】
本题考查了解一元二次方程-配方法及因式分解法,熟练掌握各自的解法是解本题的关键.
4、-12
【分析】
观察此题,先计算乘除,再计算加减即可.
【详解】
原式,
,
.
【点睛】
本题考查有理数的混合运算,先乘除后加减是解题关键.
5、
(1)
(2)
【解析】
(1)
解:
(2)
解:
【点睛】
本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序”是解本题的关键,有理数的混合运算的运算顺序为:先乘方,再乘除,最后算加减,有括号先算括号内的运算.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
中考数学陕西省汉中市中考数学真题模拟测评 (A)卷(含答案详解): 这是一份中考数学陕西省汉中市中考数学真题模拟测评 (A)卷(含答案详解),共30页。试卷主要包含了已知,则的补角等于等内容,欢迎下载使用。
模拟真题陕西省汉中市中考数学五年真题汇总 卷(Ⅲ)(含答案及详解): 这是一份模拟真题陕西省汉中市中考数学五年真题汇总 卷(Ⅲ)(含答案及详解),共28页。试卷主要包含了下列式子中,与是同类项的是等内容,欢迎下载使用。
模拟真题陕西省汉中市中考数学历年真题汇总 (A)卷(精选): 这是一份模拟真题陕西省汉中市中考数学历年真题汇总 (A)卷(精选),共32页。试卷主要包含了如图个三角形.,下列图标中,轴对称图形的是等内容,欢迎下载使用。