备考练习湖南省汨罗市中考数学模拟专项测试 B卷(含详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).
A.28B.54C.65D.75
2、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
A.B.C.D.
3、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )
A.B.C.D.
4、下列不等式中,是一元一次不等式的是( )
A.B.C.D.
5、在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )
A.B.C.D.
6、一元二次方程的根为( ).
A.B.
C.,D.,
7、下列图标中,轴对称图形的是( )
A.B.C.D.
8、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
A.B.y随x的增大而增大
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C.当时,D.关于x的方程的解是
9、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
A.冬B.奥C.运D.会
10、如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、比较大小:______(用“、或”填空).
2、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
3、如图,平分,,,则__.
4、如图,正方形 边长为 ,则 _____________
5、如图,在矩形ABCD中,cm,cm.动点P、Q分别从点A、C以1cm/s的速度同时出发.动点P沿AB向终点B运动,动点Q沿CD向终点D运动,连结PQ交对角线AC于点O.设点P的运动时间为.
(1)当四边形APQD是矩形时,t的值为______.
(2)当四边形APCQ是菱形时,t的值为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)当是等腰三角形时,t的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、现有面值为5元和2元的人民币共32张,币值共计100元,问:这两种人民币各有多少张?
2、如图,在数轴上点A表示数a,点B表示数b,点C表示数c,且a、c满足.若点A与点B之间的距离表示为,点B与点C之间的距离表示为,点B在点A、C之间,且满足.
(1)___________, ___________,___________.
(2)动点M从B点位置出发,沿数轴以每秒1个单位的速度向终点C运动,同时动点N从A点出发,沿数轴以每秒2个单位的速度向C点运动,设运动时间为t秒.问:当t为何值时,M、N两点之间的距离为3个单位?
3、如图, 已知在 Rt 中, , 点 为射线 上一动点, 且 , 点 关于直线 的对称点为点 , 射线 与射线 交于点 .
(1)当点 在边 上时,
① 求证: ;
②延长 与边 的延长线相交于点 , 如果 与 相似,求线段 的长;
(2)联结 , 如果 , 求 的值.
4、解方程:
(1);
(2).
5、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.
(1)随机摸取一个小球的标号是奇数,该事件的概率为_______;
(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.
-参考答案-
一、单选题
1、B
【分析】
一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可
【详解】
设中间的数是x,则上面的数是x-7,下面的数是x+7,
则这三个数的和是(x-7)+x+(x+7)=3x,
∴3x=28,
解得:不是整数,
故选项A不是;
∴3x=54,
解得: ,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
中间的数是18,则上面的数是11,下面的数是28,
故选项B是;
∴3x=65,
解得: 不是整数,
故选项C不是;
∴3x=75,
解得:,
中间的数是25,则上面的数是18,下面的数是32,
日历中没有32,
故选项D不是;
所以这三个数的和可能为54,
故选B.
【点睛】
本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.
2、C
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:12000
故选C
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
3、B
【分析】
科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.
【详解】
故选:B
【点睛】
本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整数,熟练地掌握科学记数法的表示方法是解本题的关键.
4、B
【分析】
根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
【详解】
A、不等式中含有两个未知数,不符合题意;
B、符合一元一次不等式的定义,故符合题意;
C、没有未知数,不符合题意;
D、未知数的最高次数是2,不是1,故不符合题意.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:B
【点睛】
本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
5、D
【分析】
根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.
【详解】
解:在Rt△ABC中,AB=,
∴点B所走过的路径长为=
故选D.
【点睛】
本题主要考查了求弧长,勾股定理,解题关键是将点B所走的路程转化为求弧长,使问题简化.
6、A
【分析】
根据方程特点,利用直接开平方法,先把方程两边开方,即可求出方程的解.
【详解】
解:,
两边直接开平方,得,
则.
故选:A.
【点睛】
此题主要考查了直接开平方法解一元二次方程,解题的关键是掌握直接开平方法的基本步骤及方法.
7、A
【详解】
解:A、是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意;
故选:A
【点睛】
本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
8、D
【分析】
根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
【详解】
A.该一次函数经过一、二、四象限
, y随x的增大而减小,
故A,B不正确;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C. 如图,设一次函数与轴交于点
则当时,,故C不正确
D. 将点坐标代入解析式,得
关于x的方程的解是
故D选项正确
故选D
【点睛】
本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
9、D
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“京”与“奥”是相对面,
“冬”与“运”是相对面,
“北”与“会”是相对面.
故选:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
10、C
【分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
【详解】
解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴,解得AD=10,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=CM+MD+CD=AD+.
故选:C.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
二、填空题
1、
【解析】
【分析】
先求两个多项式的差,再根据结果比较大小即可.
【详解】
解:∵,
=,
=
∴,
故答案为:.
【点睛】
本题考查了整式的加减,解题关键是熟练运用整式加减法则进行计算,根据结果判断大小.
2、∠ABT=∠ATB=45°(答案不唯一)
【解析】
【分析】
根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
【详解】
解:添加条件:∠ABT=∠ATB=45°,
∵∠ABT=∠ATB=45°,
∴∠BAT=90°,
又∵AB是圆O的直径,
∴AT是圆O的切线,
故答案为:∠ABT=∠ATB=45°(答案不唯一).
【点睛】
本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
3、##BC//DE
【解析】
【分析】
由平分,可得,再根据同旁内角互补两直线平行可得结论.
【详解】
解:平分,,
∴=2=110°,
,
∴∠C+∠CDE=70°+110°=180°,
.
故答案为:.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了角的平分线的性质,平行线的判定,熟练的掌握平行线的判定方法是解题关键.
4、##
【解析】
【分析】
根据正方形的性质可得,过E作EG⊥BC于G,证明三角形EGC是等腰直角三角形,再根据直角三角形BEG利用勾股定理列方程即可.
【详解】
过E作EG⊥BC于G
∵正方形 边长为2
∴,
∵
∴
∴三角形EGC是等腰直角三角形
∴,
在Rt△BEG中,
∴
解得:
∴
∴
【点睛】
本题考查正方形的性质及勾股定理,解题的关键是证明三角形EGC是等腰直角三角形,最终根据勾股定理列方程计算即可.
5、 4 或5或4
【解析】
【分析】
(1)根据矩形的性质得到CD=cm,,求出DQ=(8-t)cm,由四边形APQD是矩形时,得到t=8-t,求出t值;
(2)连接PC,求出AP=PC=tcm,PB=(8-t)cm,由勾股定理得,即,求解即可;
(3)由勾股定理求出AC=10cm,证明△OAP≌△OCQ,得到OA=OC=5cm,分三种情况:当AP=OP时,过点P作PN⊥AO于N,证明△NAP∽△BAC,得到,求出t=;当AP=AO=5cm时,t=5;当OP=AO=5cm时,过点O作OG⊥AB于G,证明△OAG∽△CAB,得到,代入数值求出t.
【详解】
解:(1)由题意得AP=CQ=t,
∵在矩形ABCD中,cm,cm.
∴CD=cm,,
∴DQ=(8-t)cm,
当四边形APQD是矩形时,AP=DQ,
∴t=8-t,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得t=4,
故答案为:4;
(2)连接PC,
∵四边形APCQ是菱形,
∴AP=PC=tcm,PB=(8-t)cm,
∵在矩形ABCD中,∠B=90°,
∴,
∴,
解得,
故答案为:;
(3)∵∠B=90°,cm,cm.
∴AC=10cm,
∵,
∴∠OAP=∠OCQ,∠OPA=∠OQC,
∴△OAP≌△OCQ,
∴OA=OC=5cm,
分三种情况:
当AP=OP时,过点P作PN⊥AO于N,则AN=ON=2.5cm,
∵∠NAP=∠BAC,∠ANP=∠B,
∴△NAP∽△BAC,
∴,
∴,
解得t=;
当AP=AO=5cm时,t=5;
当OP=AO=5cm时,过点O作OG⊥AB于G,则,
∵∠OAG=∠BAC,∠OGA=∠B,
∴△OAG∽△CAB,
∴,
∴,
解得t=4,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:或5或4.
【点睛】
此题考查了矩形的性质,菱形的性质,等腰三角形的性质,勾股定理,相似三角形的判定及性质,熟记各知识点并应用解决问题是解题的关键.
三、解答题
1、面值为5元得人民币由12张,面值为2元得人民币由20张.
【分析】
设面值为5元得人民币由张,面值为2元得人民币由张,然后由面值共100元,列出方程,解方程即可.
【详解】
解答:解:设面值为5元得人民币由张,面值为2元得人民币由张,
根据题意得:,
解得:(张,
(张.
答:面值为5元得人民币由12张,面值为2元得人民币由20张.
【点睛】
此题属于一元一次方程的应用题,关键是由题意列出方程.
2、
(1)-2,2,10;
(2)1或7
【分析】
(1)根据非负性,得到a+2=0,c-10=0,将线段长转化为绝对值即|b-c|=2||a-b,化简绝对值;
(2)先用t分别表示M,N代表的数,根据MN=3,转化为绝对值问题求解.
(1)
∵,
∴a= -2,c=10,
∵点B在点A、C之间,且满足,
∴10-b=2(b+2),
解得b=2,
故答案为:-2,2,10;
(2)
设运动时间为t秒,则点N表示的数为2t-2;点M表示的数为t+2,
根据题意,得|t+2-(2t-2)|=3,
∴-t+4=3或-t+4= -3,
解得t=1或t=7,
故t为1或7时,M、N两点之间的距离为3个单位.
【点睛】
本题考查了实数的非负性,数轴上两点间的距离,绝对值的化简,熟练把线段长转化为绝对值表示是解题的关键.
3、
(1)①见解析;②
(2)3或4
【分析】
(1)① 如图1,连接CE,DE,根据题意,得到CB=CE=CA,利用等腰三角形的底角与顶角的关系,三角形外角的性质,可以证明;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
②连接BE,交CD于定Q,利用三角形外角的性质,确定△DCB∽△BGE,利用相似,证明△ABG是等腰三角形,△ABE是等腰三角形,△BEF是等腰直角三角形,用BE表示GE,后用相似三角形的性质求解即可;
(2)分点D在AB上和在AB的延长上,两种情形,运用等腰三角形的性质,勾股定理分别计算即可.
(1)
① 如图1,连接CE,DE,
∵点B关于直线CD的对称点为点E,
∴CE=CB,BD=DE,∠ECD=∠BCD,∠ACE=90°-2∠ECD,
∵AC=BC,
∴AC=EC,
∴∠AEC=∠ACE,
∵2∠AEC=180°-∠ACE=180°-90°+2∠ECD,
∴∠AEC=45°+∠ECD,
∵∠AEC=∠AFC +∠ECD,
∴∠AEC=45°+∠ECD=∠AFC +∠ECD,
∴∠AFC=45°;
②连接BE,交CD于定Q,
根据①得∠EAB =∠DCB,∠AFC=45°,
∵点B关于直线CD的对称点为点E,
∴∠EFC=∠BFC=45°,CF⊥BE,
∴BF⊥AG,△BEF是等腰直角三角形, BF=EF,
∵∠BEG>∠EAB,与 相似,
∴△DCB∽△BGE,
∴∠EAB =∠DCB=∠BGE,∠DBC=∠BEG=45°,
∴AB=BG,∠EAB+∠EBA=∠EAB+∠BGE,
∴∠EAB=∠EBA=∠BGE,
∴AE=BE=BF=EF,
∵BF⊥AG,
∴AF=FG=AE+EF=BE+EF=BE+BE=BE,
∴GE=EF+FG=BE+BE= BE,
∴=,
∵△DCB∽△BGE,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∴BD==,
(2)
过点C作CM⊥AE,垂足为M,
根据①②知,△ACE是等腰三角形,△BEF是等腰直角三角形,
∴AM=ME,BF⊥AF,
设AM=ME=x,CM=y,
∵AC=BC=5,∠ACB=90°,,
∴,AB=,xy=12,
∴
==49,
∴x+y=7或x+y=-7(舍去);
∴
==1,
∴x-y=1或x-y=-1;
∴或
∴或
∴或
∴AE=8或AE=6,
当点D在AB上时,如图3所示,AE=6,
设BF=EF=m,
∴,
∴,
解得m=1,m=-7(舍去),
∴=3;
当点D在AB的延长线上时,如图4所示,AE=8,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设BF=EF=n,
∴,
∴,
解得n=1,n=7(舍去),
∴=4;
∴或.
【点睛】
本题考查了轴对称的性质,等腰直角三角形的判定性质,等腰三角形的判定和性质,完全平方公式,勾股定理,三角形相似的判定和性质,一元二次方程的解法,分类思想,熟练掌握勾股定理,三角形的相似,一元二次方程的解法是解题的关键.
4、
(1)x=2;
(2)x=-1
【分析】
(1)根据一元一次方程的解法解答即可;
(2)根据一元一次方程的解法解答即可.
(1)
解:去括号,得:8-4x+12=6x,
移项、合并同类项,得:-10x=-20,
化系数为1,得:x=2;
(2)
解:去分母,得:3(2x+3)-(x-2)=6,
去括号,得:6x+9-x+2=6,
移项、合并同类项,得:5x=-5,
化系数为1,得:x=-1;
【点睛】
本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
5、
(1)
(2)(两次取出的小球标号相同)
【分析】
(1)直接由概率公式求解即可;
(2)画树状图,共有9种等可能的结果,两次取出小球标号相同的结果有3种,再由概率公式求解即可.
(1)
∵在1,2,3三个数中,其中奇数有1,3共2个数,
∴随机摸取一个小球的标号是奇数,该事件的概率为
故答案为:;
(2)
画树状图如下:
由树状图可知,随机摸取一个小球后放回,再随机摸取一个小球,共有9种等可能的结果,其中两次· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
取出的小球标号相同的结果共有3种,
∴(两次取出的小球标号相同).
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
备考练习湖南省汨罗市中考数学三年真题模拟 卷(Ⅱ)(含详解): 这是一份备考练习湖南省汨罗市中考数学三年真题模拟 卷(Ⅱ)(含详解),共30页。试卷主要包含了如图,等内容,欢迎下载使用。
备考练习湖南省汨罗市中考数学备考模拟练习 (B)卷(含答案详解): 这是一份备考练习湖南省汨罗市中考数学备考模拟练习 (B)卷(含答案详解),共21页。试卷主要包含了如图,A,一元二次方程的根为等内容,欢迎下载使用。
湖南省汨罗市中考数学模拟专项测评 A卷(含详解): 这是一份湖南省汨罗市中考数学模拟专项测评 A卷(含详解),共24页。试卷主要包含了下列图像中表示是的函数的有几个等内容,欢迎下载使用。