备考练习湖南省汨罗市中考数学历年真题定向练习 卷(Ⅰ)(含答案解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、单项式的次数是( )
A.1B.2C.3D.4
2、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
A.B.C.D.
3、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
4、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
A.abB.a+bC.abD.a
5、如图,在中,,,,则的度数为( )
A.87°B.88°C.89°D.90°
6、如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2),再分别连接图(2)中间的小三角形三边中点得到图(3),按这种方法继续下去,第6个图形有( )个三角形.
A.20B.21C.22D.23
7、下列语句中,不正确的是( )
A.0是单项式B.多项式的次数是4
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C.的系数是D.的系数和次数都是1
8、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米B.10米C.米D.12米
9、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
10、在一个不透明的袋中装有6个只有颜色不同的球,其中1个红球、2个黄球和3个白球.从袋中任意摸出一个球,是白球的概率为( ).
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知(n为正整数)满足:,则__________.
2、如图,平分,,,则__.
3、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
(1)由图2可得等式:________;
(2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
4、2020年10月,华为推出了高端手机,它搭载的麒麟9900芯片是全球第一颗,也是唯一一颗采用5纳米工艺制造的,集成了153亿个晶体管,比苹果的芯片多了,是目前世界上晶体管最多、功能最完整的.其中“153亿”这个数据用科学记数法可以表示为__.
5、如图,,D为外一点,且交的延长线于E点,若,则_______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、解答题(5小题,每小题10分,共计50分)
1、现有面值为5元和2元的人民币共32张,币值共计100元,问:这两种人民币各有多少张?
2、计算:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2.
3、如图,在中,,将绕点C旋转得到,连接AD.
(1)如图1,点E恰好落在线段AB上.
①求证:;
②猜想和的关系,并说明理由;
(2)如图2,在旋转过程中,射线BE交线段AC于点F,若,,求CF的长.
4、如图,一次函数的图象与反比例函数的图象相交于和两点.
(1)______,_______;
(2)结合图象直接写出不等式的解集.
5、解方程:
(1);
(2)
-参考答案-
一、单选题
1、C
【分析】
单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
【详解】
解:单项式的次数是3,
故选C
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
2、D
【分析】
根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
【详解】
解:在△AEF和△ABC中,
,
∴△AEF≌△ABC(SAS),
∴AF=AC,∠AFE=∠C,
∴∠C=∠AFC,
∴∠EFC=∠AFE+∠AFC=2∠C.
故选:D.
【点睛】
本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
3、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
4、B
【分析】
先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
【详解】
解:∵△ABC、△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵AF=CF,
∴∠ABD=∠CBD=∠ACE=30°,
∴点E在射线CE上运动(∠ACE=30°),
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵CA=CM,∠ACM=60°,
∴△ACM是等边三角形,
∴△ACM≌△ACB,
∴FM=FB=b,
∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
故选:B.
【点睛】
此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
5、A
【分析】
延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E=31°,再根据三角形内角和可求度数.
【详解】
解:延长DB至E,使BE=AB,连接AE,
∴∠BAE=∠E,
∵,
∴∠BAE=∠E=31°,
∵AB+BD=CD
∴BE+BD=CD
即DE=CD,
∵AD⊥BC,
∴AD垂直平分CE,
∴AC=AE,
∴∠C=∠E=31°,
∴;
故选:A.
【点睛】
此题考查了等腰三角形的性质,垂直平分线的性质,三角形内角和定理等知识点的综合运用.恰当作出辅助线是正确解答本题的关键.
6、B
【分析】
由第一个图中1个三角形,第二个图中5个三角形,第三个图中9个三角形,每次递增4个,即可得出第n个图形中有(4n-3)个三角形.
【详解】
解:由图知,第一个图中1个三角形,即(4×1-3)个;
第二个图中5个三角形,即(4×2-3)个;
第三个图中9个三角形,即(4×3-3)个;
…
∴第n个图形中有(4n-3)个三角形.
∴第6个图形中有个三角形
故选B
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了图形变化的一般规律问题.能够通过观察,掌握其内在规律是解题的关键.
7、D
【分析】
分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
【详解】
解:A、0是单项式,正确,不符合题意;
B、多项式的次数是4,正确,不符合题意;
C、的系数是,正确,不符合题意;
D、的系数是-1,次数是1,错误,符合题意,
故选:D.
【点睛】
本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
8、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
9、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
10、C
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:∵袋子中共有6个小球,其中白球有3个,
∴摸出一个球是白球的概率是.
故选:C.
【点睛】
本题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
二、填空题
1、
【解析】
【分析】
由 ,再依次计算 从而可得答案.
【详解】
解: ,
故答案为:
【点睛】
本题考查的是已知字母的值,求解代数式的值,理解运算法则的含义并进行计算是解本题的关键.
2、##BC//DE
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
由平分,可得,再根据同旁内角互补两直线平行可得结论.
【详解】
解:平分,,
∴=2=110°,
,
∴∠C+∠CDE=70°+110°=180°,
.
故答案为:.
【点睛】
本题考查了角的平分线的性质,平行线的判定,熟练的掌握平行线的判定方法是解题关键.
3、 2
【解析】
【分析】
(1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
(2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再利用(1)的结论可得,从而可得,由此即可得出答案.
【详解】
解:(1)方法一:图形的面积为,
方法二:图形的面积为,
则由图2可得等式为,
故答案为:;
(2),
,
,
利用(1)的结论得:,
,
,即,
,
,
故答案为:2.
【点睛】
本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
4、
【解析】
【分析】
科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
153亿.
故答案为:.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
5、2
【解析】
【分析】
过点D作DM⊥CB于M,证出∠DAE=∠DBM,判定△ADE≌△BDM,得到DM=DE=3,证明四边形CEDM是矩形,得到CE=DM=3,由AE=1,求出BC=AC=2.
【详解】
解:∵DE⊥AC,
∴∠E=∠C=90°,
∴,
过点D作DM⊥CB于M,则∠M=90°=∠E,
∵AD=BD,
∴∠BAD=∠ABD,
∵AC=BC,
∴∠CAB=∠CBA,
∴∠DAE=∠DBM,
∴△ADE≌△BDM,
∴DM=DE=3,
∵∠E=∠C=∠M =90°,
∴四边形CEDM是矩形,
∴CE=DM=3,
∵AE=1,
∴BC=AC=2,
故答案为:2.
【点睛】
此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.
三、解答题
1、面值为5元得人民币由12张,面值为2元得人民币由20张.
【分析】
设面值为5元得人民币由张,面值为2元得人民币由张,然后由面值共100元,列出方程,解方程即可.
【详解】
解答:解:设面值为5元得人民币由张,面值为2元得人民币由张,
根据题意得:,
解得:(张,
(张.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
答:面值为5元得人民币由12张,面值为2元得人民币由20张.
【点睛】
此题属于一元一次方程的应用题,关键是由题意列出方程.
2、
【分析】
根据整式的乘法公式及运算法则化简,合并即可求解.
【详解】
(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2
=a2-4b2-a2+4ab-4b2+8b2
=4ab.
【点睛】
此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.
3、
(1)①见解析;②,理由见解析
(2)3或
【分析】
(1)①由旋转的性质得,,,根据相似的判定定理即可得证;
②由旋转和相似三角形的性质得,由得,故,代换即可得出结果;
(2)设,作于H,射线BE交线段AC于点F,则,由旋转可证,由相似三角形的性质得,即,由此可证,故,求得,分情况讨论:①当线段BE交AC于F时、当射线BE交AC于F时,根据相似比求出x的值,再根据勾股定理即可求出CF的长.
(1)
①∵将绕点C旋转得到,
∴,,,
∴,,
∴;
②,理由如下:
∵将绕点C旋转得到,
∴,
∵,,,
∴,
∵,
∴,
∴,
∴;
(2)
设,作于H,射线BE交线段AC于点F,则,
∵将绕点C旋转得到,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,,,
∴,,
∴,
∴,,即,
∵,
∴,
∴,
∵,,
∴
①当线段BE交AC于F时,
解得,(舍),
∴,
②当射线BE交AC于F时,
解得(舍),,
∴,
综上,CF的长为3或.
【点睛】
本题考查相似三角形的判定与性质以及旋转的性质,掌握相似三角形的判定定理以及性质是解题的关键.
4、
(1),
(2)或
【分析】
(1)把A(-1,m),B(n,-1)分别代入反比例函数解析式可求出m、n;
(2)确定A点坐标为(-1,2),B点坐标为(2,-1),然后根据图象即可求得.
(1)
把A(-1,m),B(n,-1)分别代入得-m=-2,-n=-2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得m=2,n=2,
故答案为:2,2
(2)
∵m=2,n=2,
∴A点坐标为(-1,2),B点坐标为(2,-1),
根据图象可得,不等式的解集为或.
【点睛】
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.
5、
(1)x= ;
(2)x=
【分析】
(1)根据解一元一次方程的方法求解即可;
(2)根据解一元一次方程的方法求解即可.
(1)
解:去括号,得:6-9x=x+1,
移项、合并同类项,得:-10x=-5,
化系数为1,得:x= ;
(2)
解:去分母,得:2(2x+1)=6+(1-3x),
去括号,得:4x+2=6+1-3x,
移项、合并同类项,得:7x=5,
化系数为1,得:x= ;
【点睛】
本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
【真题汇总卷】湖南省汨罗市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解): 这是一份【真题汇总卷】湖南省汨罗市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解),共24页。试卷主要包含了如图,有三块菜地△ACD,下列计算中,正确的是等内容,欢迎下载使用。
【中考特训】湖南省汨罗市中考数学历年真题练习 (B)卷(含答案详解): 这是一份【中考特训】湖南省汨罗市中考数学历年真题练习 (B)卷(含答案详解),共24页。试卷主要包含了下列现象等内容,欢迎下载使用。
备考特训湖南省张家界市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解): 这是一份备考特训湖南省张家界市中考数学历年真题定向练习 卷(Ⅰ)(含答案详解),共24页。