真题解析陕西省汉中市中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
A.B.y随x的增大而增大
C.当时,D.关于x的方程的解是
2、如图,下列条件中不能判定的是( )
A.B.C.D.
3、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
A.1B.2C.3D.0
4、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
A.冬B.奥C.运D.会
5、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
A.B.C.D.
6、为了完成下列任务,你认为最适合采用普查的是( )
A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
7、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
8、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
A.①②③B.①②④C.①③④D.②③④
9、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )
A.将沿轴翻折得到
B.将沿直线翻折,再向下平移个单位得到
C.将向下平移个单位,再沿直线翻折得到
D.将向下平移个单位,再沿直线翻折得到
10、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).
A.28B.54C.65D.75
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,和均为等边三角形,,分别在边,上,连接,,若,则__________.
2、如图,在△ABC中,CD⊥AB,垂足为D,CE为△ACD的角平分线. 若CD=8,BC=10,且△BCE的面积为32,则点E到直线AC的距离为________.
3、如图,在中,中线相交于点,如果的面积是4,那么四边形的面积是_________
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、若反比例函数的图象位于第一、第三象限,则的取值范围是_______.
5、如图,射线,相交于点,则的内错角是__.
三、解答题(5小题,每小题10分,共计50分)
1、计算:(x+2)(4x﹣1)+2x(2x﹣1).
2、如图1,在平面直角坐标系中,已知A(8,0),B(0,4),点P从点A出发,沿AO方向以2个单位长度/秒的速度运动,点Q从点O出发,沿OB方向以1个单位长度/秒的速度运动,当点P到点O的位置时,两点停止运动.设运动时间为t秒.
(1)当t为何值时,△POQ的面积为3;
(2)当t为何值时,△POQ与△AOB相似;
(3)如图2,将线段BA绕点B逆时针旋转45°至BD,请直接写出点D的坐标.
3、已知四边形 是菱形, , 点 在射线 上, 点 在射线 上,且 .
(1)如图, 如果 , 求证: ;
(2)如图, 当点 在 的延长线上时, 如果 , 设 , 试建立 与 的函数关系式,并写出 的取值范围
(3)联结 , 当 是等腰三角形时,请直接写出 的长.
4、如图,在平面直角坐标系中,抛物线与轴交于两点与轴交于点C,点M是抛物线的顶点,抛物线的对称轴与BC交于点D,与轴交于点E.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)求抛物线的对称轴及B点的坐标
(2)如果,求抛物线的表达式;
(3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段的下方,,求点的坐标
5、先化简,再求值:,其中.
-参考答案-
一、单选题
1、D
【分析】
根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
【详解】
A.该一次函数经过一、二、四象限
, y随x的增大而减小,
故A,B不正确;
C. 如图,设一次函数与轴交于点
则当时,,故C不正确
D. 将点坐标代入解析式,得
关于x的方程的解是
故D选项正确
故选D
【点睛】
本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
2、A
【分析】
根据平行线的判定逐个判断即可.
【详解】
解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
∴∠3=∠5,
因为”同旁内角互补,两直线平行“,
所以本选项不能判断AB∥CD;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
B、∵∠3=∠4,
∴AB∥CD,
故本选项能判定AB∥CD;
C、∵,
∴AB∥CD,
故本选项能判定AB∥CD;
D、∵∠1=∠5,
∴AB∥CD,
故本选项能判定AB∥CD;
故选:A.
【点睛】
本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
3、B
【分析】
证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
【详解】
解:∵与都是以A为直角顶点的等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴,故①正确;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∵,
∴,
∴不成立,故②错误;
设BD交CE于M,
∵∠ACE+∠DBC=45°,∠ACB=45°,
∴∠BMC=90°,
∴,故③正确,
故选:B.
【点睛】
此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
4、D
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“京”与“奥”是相对面,
“冬”与“运”是相对面,
“北”与“会”是相对面.
故选:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
5、B
【分析】
根据题意可知,中午的气温是,然后计算即可.
【详解】
解:由题意可得,
中午的气温是:°C,
故选:.
【点睛】
本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
6、D
【分析】
普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
7、A
【分析】
如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
【详解】
解:如图:过C作CE⊥OA,垂足为E,
∵菱形OABC,
∴OC=OA=4
∵,
∴∠OCE=30°
∵OC=4
∴OE=2
∴CE=
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴点C的坐标为.
故选A.
【点睛】
本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
8、B
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
∴,,
在与中,
,
∴,
∴,①正确;
∵,
,
∴,
∴,
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
综上可得:①②④正确,
故选:B.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
9、C
【分析】
根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.
【详解】
解:A、根据图象可得:将沿x轴翻折得到,作图正确;
B、作图过程如图所示,作图正确;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C、如下图所示为作图过程,作图错误;
D、如图所示为作图过程,作图正确;
故选:C.
【点睛】
题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.
10、B
【分析】
一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可
【详解】
设中间的数是x,则上面的数是x-7,下面的数是x+7,
则这三个数的和是(x-7)+x+(x+7)=3x,
∴3x=28,
解得:不是整数,
故选项A不是;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴3x=54,
解得: ,
中间的数是18,则上面的数是11,下面的数是28,
故选项B是;
∴3x=65,
解得: 不是整数,
故选项C不是;
∴3x=75,
解得:,
中间的数是25,则上面的数是18,下面的数是32,
日历中没有32,
故选项D不是;
所以这三个数的和可能为54,
故选B.
【点睛】
本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.
二、填空题
1、##45度
【解析】
【分析】
根据题意利用全等三角形的判定与性质得出和,进而依据进行计算即可.
【详解】
解:∵和均为等边三角形,
∴,
∴
在和中,
,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.
2、2
【解析】
【分析】
过点E作EF⊥AC于点F,根据角平分线的性质定理可得DE=EF,再由勾股定理可得BD=6,然后根据△BCE的面积为32,可得BE=8,即可求解.
【详解】
解:如图,过点E作EF⊥AC于点F,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵CE为△ACD的角平分线.CD⊥AB,
∴DE=EF,
在 中,CD=8,BC=10,
∴ ,
∵△BCE的面积为32,
∴ ,
∴BE=8,
∴EF=DE=BE-BD=2,
即点E到直线AC的距离为2.
故答案为:2
【点睛】
本题主要考查了角平分线的性质定理,勾股定理,熟练掌握角平分线的性质定理,勾股定理是解题的关键.
3、8
【解析】
【分析】
如图所示,连接DE,先推出DE是△ABC的中位线,得到,DE∥AB,即可证明△ABO∽△DEO,△CDE∽△CBA,得到,从而推出,即可得到,再由,即可得到,由,得到,则.
【详解】
解:如图所示,连接DE,
∵AD,BE分别是BC,AC边上的中线,
∴D、E分别是BC、AC的中点,
∴DE是△ABC的中位线,
∴,DE∥AB,
∴△ABO∽△DEO,△CDE∽△CBA,
∴,
∴,
∴,
∴,
∴
∵,
∴,
∵,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∴,
故答案为:8.
【点睛】
本题主要考查了相似三角形的性质与判定,三角形中位线定理,熟知相似三角形的性质与判定条件是解题的关键.
4、
【解析】
【分析】
根据反比例函数的性质解答.
【详解】
解:∵反比例函数的图象位于第一、第三象限,
∴k-1>0,
∴,
故答案为:.
【点睛】
此题考查了反比例函数的性质:当k>0时,函数图象的两个分支分别在第一、三象限内;当k<0时,函数图象的两个分支分别在第二、四象限内.
5、##∠BAE
【解析】
【分析】
根据内错角的意义,结合具体的图形进行判断即可.
【详解】
解:由内错角的意义可得,与是内错角,
故答案为:.
【点睛】
本题考查内错角,掌握内错角的意义是正确解答的前提.
三、解答题
1、
【分析】
根据单项式乘以多项式,多项式乘以多项式的法则进行乘法运算,再合并同类项即可.
【详解】
解:
【点睛】
本题考查的是整式的乘法运算,掌握“单项式乘以多项式与多项式乘以多项式的法则”是解本题的关键.
2、
(1)t=1或3秒时,△POQ的面积为3
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)t=2或秒时,△POQ与△AOB相似
(3)D(6,4+2)
【分析】
(1)由题意知:OQ=t,OP=8-2t,则×t×(8-2t)=3,解方程即可;
(2)分或两种情形,分别代入计算;
(3)过点A作AE⊥AB交BD的延长线于E,作EF⊥x轴于F,利用K型全等求出点E的坐标,从而得出BE的函数解析式,再利用两点间距离公式可表示出BD,从而解决问题.
(1)
解:(1)由题意知:OQ=t,OP=8-2t,
∴×t×(8-2t)=3,
解得t=1或3,
∴t=1或3时,△POQ的面积为3;
(2)
当△POQ与△AOB相似时,
∵∠POQ=∠AOB,
∴或,
∴或,
解得t=2或,
∴t=2或时,△POQ与△AOB相似;
(3)
如图,过点A作AE⊥AB交BD的延长线于E,作EF⊥x轴于F,
∵将线段BA绕点B逆时针旋转45°至BD,
∴∠ABD=45°,
∴△ABE是等腰直角三角形,
∴∠BAE=90°,AB=AE,
∴∠BAO+∠EAF=90°,
∵∠BAO+∠ABO=90°,
∴∠EAF=∠ABO,
在△AOB和△EFA中
,
∴△AOB≌△EFA(AAS),
∴OA=EF=8,AF=OB=4,
∴E(12,8),
设直线BE的解析式为y=kx+4,
将E(12,8)代入得12k+4=8,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得k=,
∴y=x+4,
设D(m,m+4),
∵BD=BA==4,
∴m2+(m+4-4)2=(4)2,
解得m=6(负值舍去),
∴D(6,4+2).
【点睛】
本题考查了相似三角形的判定与性质,等腰直角三角形的性质,全等三角形的判定与性质,待定系数法求函数解析式等知识,求出直线BD的函数解析式是解题的关键.
3、
(1)证明过程详见解答;
(2)
(3)或
【分析】
(1)先证明四边形是正方形,再证明,从而命题得证;
(2)在上截取,先证明是正三角形,再证明,进一步求得结果;
(3)当时,作于,以为圆心,为半径画弧交于,作于,证明,,可推出,再证明,可推出,从而求得,当时,作于,以为圆心,为半径画弧交于,作于,作于,先根据求得,进而求得,根据,,和,从而求得,根据三角形三边关系否定,从而确定的结果.
(1)
解:证明:四边形是菱形,,
菱形是正方形,
,,
,
,
;
(2)
解:如图1,
在上截取,
四边形是菱形,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,
是正三角形,
,,
,,
,
,
,
;
(3)
如图2,
当时,作于,以为圆心,为半径画弧交于,作于,
,,,,
,
四边形是菱形,
,
,,
,
①,
,
,
,
②,
由①②得,
,
,
如图3,
当时,作于,以为圆心,为半径画弧交于,作于,
作于,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由得,
,
,
,
由第一种情形知:,,
,,
①,②,
由①②得,
,
,
,
,
即,
综上所述:或.
【点睛】
本题考查了菱形性质,正方形的判定和性质,相似三角形的判定和性质,面积法等知识,解题的关键是作辅助线,构造相似三角形.
4、
(1)对称轴是,B(4,0)
(2)y=
(3)F( ,-5)
【分析】
(1)根据二次函数抛物线的性质,可求出对称轴,即可得B点的坐标;
(2)二次函数的y轴平行于对称轴,根据平行线分线段成比例用含a的代数式表示DE的长,MD= ,可表示M的纵坐标,然后把M的横坐标代入y=ax2−3ax−4a,可得到关于a的方程,求出a的值,即可得答案;
(3)先证△AOC∽△COB,得∠BCO=∠CAO,再求出∠CAO=∠CFB,得△AGC∽△FGB,根据相似三角形对于高的比等于相似比,可得答案.
(1)
解:∵二次函数y=ax2−3ax−4a,
∴对称轴是 ,
∵A(−1,0),
∵1+1.5=2.5,
∴1.5+2.5=4,
∴B(4,0);
(2)
∵二次函数y=ax2−3ax−4a,C在y轴上,
∴C的横坐标是0,纵坐标是−4a,
∵y轴平行于对称轴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴ ,
∴,
∵ ,
∵MD=,
∵M的纵坐标是+
∵M的横坐标是对称轴x,
∴ ,
∴+=,
解这个方程组得: ,
∴y=ax2−3ax−4a= x2-3×()x-4×()=;
(3)
假设F点在如图所示的位置上,连接AC、CF、BF,CF与AB相交于点G,
由(2)可知:AO=1,CO=2,BO=4,
∴ ,
∴,
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴∠BCO=∠CAO,
∵∠CFB=∠BCO,
∴∠CAO=∠CFB,
∵∠AGC=∠FGB,
∴△AGC∽△FGB,
∴ ,
设EF=x,
∵BF2=BE2+EF2= ,AC2=22+12=5,CO2=22=4,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴= ,
解这个方程组得:x1=5,x2=-5,
∵点F在线段BC的下方,
∴x1=5(舍去),
∴F(,-5).
【点睛】
本题考查了二次函数的性质、平行线分线段成比例、一元一次方程的解法、一元二次方程方程的解法、相似三角形的判定与性质,做题的关键是相似三角形的判定与性质的灵活运用.
5、
【分析】
根据非负数的性质先求解的值,再去括号,合并同类项进行整式的加减运算,最后再求解代数式的值即可.
【详解】
解:
解得:
当时,
原式
【点睛】
本题考查的是非负数的性质,整式的加减运算中的化简求值,掌握“非负数的性质以及去括号,合并同类项”是解本题的关键.
【真题汇编】陕西省汉中市中考数学历年真题汇总 (A)卷(含答案及解析): 这是一份【真题汇编】陕西省汉中市中考数学历年真题汇总 (A)卷(含答案及解析),共27页。试卷主要包含了已知,则的补角等于,抛物线的顶点为等内容,欢迎下载使用。
【高频真题解析】湖南省中考数学真题汇总 卷(Ⅱ)(含详解): 这是一份【高频真题解析】湖南省中考数学真题汇总 卷(Ⅱ)(含详解),共30页。试卷主要包含了下列计算中,正确的是,利用如图①所示的长为a等内容,欢迎下载使用。
【高频真题解析】湖南省中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解): 这是一份【高频真题解析】湖南省中考数学三年高频真题汇总 卷(Ⅰ)(含答案及详解),共28页。试卷主要包含了下列式子中,与是同类项的是,一元二次方程的根为.等内容,欢迎下载使用。