专题18 数列(解答题压轴题) 高考数学压轴题(新高考版)
展开TOC \ "1-1" \h \u \l "_Tc3947" ①数列求通项,求和 PAGEREF _Tc3947 \h 1
\l "_Tc17062" ②数列中的恒成立(能成立)问题 PAGEREF _Tc17062 \h 5
\l "_Tc29907" ③数列与函数 PAGEREF _Tc29907 \h 8
\l "_Tc25373" ④数列与概率 PAGEREF _Tc25373 \h 11
①数列求通项,求和
1.(2023·江苏徐州·校考模拟预测)已知数列的前项和为,且,.
(1)求数列的通项公式;
(2)集合,将集合的所有非空子集中最小的元素相加,其和记为,求.
2.(2023·云南昭通·校联考模拟预测)已知各项均为正数的数列的首项,其前项和为,从①;②,;③中任选一个条件作为已知,并解答下列问题.
(1)求数列的通项公式;
(2)设,设数列的前项和,求证:.
(注:如果选择多个条件分别解答,按第一个解答计分).
3.(2023·海南海口·海南华侨中学校考一模)已知各项均为正数的数列满足,其中是数列的前n项和.
(1)求数列的通项公式;
(2)若对任意,且当时,总有恒成立,求实数的取值范围.
4.(2023·湖南郴州·安仁县第一中学校联考模拟预测)已知数列的前项和为.
(1)求数列的通项公式;
(2)已知数列的前项和为(取整函数表示不超过的整数,如),求数列的前100项的和.
5.(2023·湖南郴州·统考模拟预测)已知正项等比数列的前n项和为,且满足,数列满足.
(1)求数列的通项公式;
(2)设,求数列的前项和.
6.(2023·湖南长沙·长郡中学校联考模拟预测)已知数列满足,且
(1)设,求数列的通项公式;
(2)设数列的前n项和为,求使得不等式成立的n的最小值.
7.(2023·山西运城·山西省运城中学校校考二模)已知数列满足.
(1)求数列的通项公式;
(2)记数列的前项和为,证明:.
8.(2023·福建三明·统考三模)已知数列满足,.
(1)求数列的通项公式;
(2)设,的前项和为,证明:.
9.(2023·湖北武汉·统考模拟预测)已知是数列的前项和,,.
(1)求数列的通项公式;
(2)若,求数列的前项和.
10.(2023·福建福州·福建省福州第一中学校考模拟预测)已知数列的首项,,.
(1)设,求数列的通项公式;
(2)在与(其中)之间插入个3,使它们和原数列的项构成一个新的数列.记为数列的前n项和,求.
11.(2023·山东泰安·统考模拟预测)已知数列是递增的等差数列,是公比为的等比数列,的前项和为,且成等比数列,,成等差数列.
(1)求,的通项公式;
(2)若,的前项和.证明:.
12.(2023·河北·统考模拟预测)已知数列的前项和为,且.
(1)证明:数列是等差数列;
(2)若,,成等比数列.从下面三个条件中选择一个,求数列的前项和.(注:如果选择多个条件分别解答,按第一个解答计分)
①;②;③.
②数列中的恒成立(能成立)问题
1.(2023·吉林·长春吉大附中实验学校校考模拟预测)图中的数阵满足:每一行从左到右成等差数列,每一列从上到下成等比数列,且公比均为实数.
(1)设,求数列的通项公式;
(2)设,是否存在实数,使恒成立,若存在,求出的所有值,若不存在,请说明理由.
2.(2023·河北·统考模拟预测)已知数列的前项和为,点在曲线上.
(1)证明:数列为等差数列;
(2)若,数列的前项和满足对一切正整数恒成立,求实数的值.
3.(2023·云南·校联考模拟预测)已知数列的前项和为,,,.
(1)求数列的通项公式;
(2)设,的前项和为,若对任意的正整数,不等式恒成立,求实数的取值范围.
4.(2023·浙江·二模)记为正数列的前项和,已知是等差数列.
(1)求;
(2)求最小的正整数,使得存在数列,.
5.(2023·上海徐汇·统考一模)对于数列,,其中,对任意正整数都有,则称数列为数列的“接近数列”.已知为数列的“接近数列”,且,.
(1)若(是正整数),求,,,的值;
(2)若(是正整数),是否存在(是正整数),使得,如果存在,请求出的最小值,如果不存在,请说明理由;
(3)若为无穷等差数列,公差为,求证:数列为等差数列的充要条件是.
6.(2023·四川雅安·统考模拟预测)给出以下条件:①,,成等比数列;②,,成等比数列;③是与的等差中项.从中任选一个,补充在下面的横线上,再解答.
已知单调递增的等差数列的前n项和为,且,______.
(1)求的通项公式;
(2)令是以2为首项,2为公比的等比数列,数列的前n项和为.若,,求实数的取值范围.
注:如果选择多个条件分别解答,按第一个解答计分.
③数列与函数
1.(2023·上海杨浦·复旦附中校考模拟预测)设是定义域为的函数,如果对任意的、均成立, 则称是“平缓函数”.
(1)若, 试判断和是否为“平缓函数” ? 并说明理由; (参考公式:时, 恒成立)
(2)若函数是“平缓函数”, 且是以 1为周期的周期函数, 证明:对任意的、, 均有;
(3)设 为定义在上函数, 且存在正常数 使得函数为“平缓函数”. 现定义数列满足:, 试证明:对任意的正整数.
2.(2023春·上海黄浦·高三上海市大同中学校考阶段练习)设函数,.
(1)记,,,.证明:数列为等差数列;
(2)设.若对任意均有成立,求m的最大值;
(3)是否存在正整数使得对任意,,都有成立?若存在,求的最小可能值;若不存在,说明理由.
3.(2023春·上海闵行·高二上海市七宝中学校考期中)已知,.
(1)求函数的单调区间;
(2)容易证明对任意的都成立,若点的坐标为,、为函数图像上横坐标均大于1的不同两点,试证明:;
(3)数列满足,,证明:.
4.(2023春·吉林通化·高二梅河口市第五中学校考阶段练习)已知函数.
(1)令,讨论的单调性;
(2)证明:;
(3)若,对于任意的,不等式恒成立,求实数的取值范围.
5.(2023·全国·高三专题练习)若函数是其定义域内的区间上的严格增函数,而是上的严格减函数,则称是上的“弱增函数”.若数列是严格增数列,而是严格减数列,则称是“弱增数列”.
(1)判断函数是否为上的“弱增函数”,并说明理由(其中是自然对数的底数);
(2)已知函数与函数的图像关于坐标原点对称,若是上的“弱增函数”,求的最大值;
(3)已知等差数列是首项为4的“弱增数列”,且公差d是偶数.记的前项和为,设是正整数,常数,若存在正整数和,使得且,求所有可能的值.
6.(2023·上海杨浦·统考一模)已知函数,其中为正整数,且为常数.
(1)求函数的单调增区间;
(2)若对于任意,函数,在内均存在唯一零点,求a的取值范围;
(3)设是函数大于0的零点,其构成数列.问:是否存在实数a使得中的部分项:,,,(其中时,)构成一个无穷等比数列若存在;求出a;若不存在请说明理由.
7.(2023·全国·高三专题练习)已知等差数列公差为,前n项和为.
(1)若,,求的通项公式;
(2)若,、、成等比数列,且存在正整数p、,使得与均为整数,求的值;
(3)若,证明对任意的等差数列,不等式恒成立.
④数列与概率
1.(2023·湖南·校联考模拟预测)一部电视连续剧共有集,某同学看了第一集后,被该电视剧的剧情所吸引,制定了如下的观看计划:从看完第一集后的第一天算起,把余下的集电视剧随机分配在天内;每天要么不看,要么看完完整的一集;每天至多看一集.已知这部电视剧最精彩的部分在第集,设该同学观看第一集后的第天观看该集.
(1)求的分布列;
(2)证明:最有可能在第天观看最精彩的第集.
2.(2023春·河北唐山·高二校考期末)第22届世界杯于2022年11月21日到12月18日在卡塔尔举办.在决赛中,阿根廷队通过点球战胜法国队获得冠军.
(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数X的分布列和期望;
(2)好成绩的取得离不开平时的努力训练,甲、乙、丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外2人中的1人,接球者接到球后再等可能地随机传向另外2人中的1人,如此不停地传下去,假设传出的球都能接住.记第n次传球之前球在甲脚下的概率为pn,易知.
①试证明:为等比数列;
②设第n次传球之前球在乙脚下的概率为qn,比较p10与q10的大小.
3.(2023·全国·高三专题练习)小明进行射击练习,他第一次射击中靶的概率为0.7,从第二次射击开始,若前一次中靶,则该次射击中靶的概率为0.9,否则中靶概率为0.7.
(1)求小明射击3次恰有2次中靶的概率;
(2)①分别求小明第2次,第3次中靶的概率.
②求小明第n次中靶的概率.
4.(2023·全国·高三专题练习)学校篮球队30名同学按照1,2,…,30号站成一列做传球投篮练习,篮球首先由1号传出,训练规则要求:第号同学得到球后传给号同学的概率为,传给号同学的概率为,直到传到第29号(投篮练习)或第30号(投篮练习)时,认定一轮训练结束,已知29号同学投篮命中的概率为,30号同学投篮命中的概率为,设传球传到第号的概率为.
(1)求的值;
(2)证明:是等比数列;
(3)比较29号和30号投篮命中的概率大小.
5.(2023·全国·高三专题练习)某校为了解该校学生“停课不停学”的网络学习效率,随机抽查了高一年级100位学生的某次数学成绩(单位:分),得到如下所示的频率分布直方图:
(1)估计这100位学生的数学成绩的平均值;(同一组中的数据用该组区间的中点值代表)
(2)根据整个年级的数学成绩可以认为学生的数学成绩近似地服从正态分布,经计算,(1)中样本的标准差s的近似值为10,用样本平均数作为的近似值,用样本标准差s作为的估计值,现任抽取一位学生,求他的数学成绩恰在64分到94分之间的概率;(若随机变量,则,,)
(3)该年级1班的数学老师为了能每天督促学生的网络学习,提高学生每天的作业质量及学习数学的积极性,特意在微信上设计了一个每日作业小程序,每当学生提交的作业获得优秀时,就有机会参与一次小程序中”玩游戏,得奖励积分”的活动,开学后可根据获得积分的多少向老师领取相应的小奖品.小程序页面上有一列方格,共15格,刚开始有只小兔子在第1格,每点一下游戏的开始按钮,小兔子就沿着方格跳一下,每次跳1格或跳2格,概率均为,依次点击游戏的开始按钮,直到小兔子跳到第14格(奖励0分)或第15格(奖励5分)时,游戏结束,每天的积分自动累加,设小兔子跳到第格的概率为,试证明是等比数列,并求(获胜的概率)的值.
6.(2023·全国·高三专题练习)2022年4月23日是第27个“世界读书日”,某校组织“读书使青春展翅,知识让生命飞翔”主题知识竞赛,规定参赛同学每答对一题得2分,答错得1分,不限制答题次数.已知小明能正确回答每题的概率都为,且每次回答问题是相互独立的,记小明得分的概率为,.
(1)求,的值;
(2)求.
7.(2023春·浙江宁波·高二校联考期末)某商场拟在周年店庆进行促销活动,对一次性消费超过200元的顾客,特别推出“玩游戏,送礼券”的活动,游戏规则如下:每轮游戏都抛掷一枚质地均匀的骰子,若向上点数不超过4点,获得1分,否则获得2分,进行若干轮游戏,若累计得分为9分,则游戏结束,可得到200元礼券,若累计得分为10分,则游戏结束,可得到纪念品一份,最多进行9轮游戏.
(1)当进行完3轮游戏时,总分为,求的分布列和数学期望;
(2)若累计得分为的概率为,初始分数为0分,记
(i)证明:数列是等比数列;
(ii)求活动参与者得到纪念品的概率.
8.(2023·全国·高三专题练习)某学校组织数学,物理学科答题竞赛活动,该学校准备了个相同的箱子,其中第个箱子中有个数学题,个物理题.每一轮竞赛活动规则如下:任选一个箱子,依次抽取三个题目(每次取出不放回),并全部作答完毕,则该轮活动结束;若此轮活动中,三个题目全部答对获得一个奖品.
(1)已知学生甲在每一轮活动中,都抽中了个数学题,个物理题,且甲答对每一个数学题的概率为,答对每一个物理题的概率为.
①求学生甲第一轮活动获得一个奖品的概率;
②已知,学生甲理论上至少要进行多少轮活动才能获得四个奖品?并求此时、的值.
(2)若学生乙只参加一轮活动,求乙第三次抽到物理题的概率.
专题26 概率统计(解答题压轴题)(学生+教师版)--310高考数学压轴题(新高考版): 这是一份专题26 概率统计(解答题压轴题)(学生+教师版)--310高考数学压轴题(新高考版),文件包含专题26概率统计解答题压轴题教师版docx、专题26概率统计解答题压轴题学生版docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。
专题24 抛物线(解答题压轴题)(学生+教师版)--310高考数学压轴题(新高考版): 这是一份专题24 抛物线(解答题压轴题)(学生+教师版)--310高考数学压轴题(新高考版),文件包含专题24抛物线解答题压轴题教师版docx、专题24抛物线解答题压轴题学生版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
专题23 双曲线(解答题压轴题)(学生+教师版)--310高考数学压轴题(新高考版): 这是一份专题23 双曲线(解答题压轴题)(学生+教师版)--310高考数学压轴题(新高考版),文件包含专题23双曲线解答题压轴题教师版docx、专题23双曲线解答题压轴题学生版docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。