|试卷下载
终身会员
搜索
    上传资料 赚现金
    备考2024新高考新题型高三数学--马尔科夫链与概率不等式
    立即下载
    加入资料篮
    备考2024新高考新题型高三数学--马尔科夫链与概率不等式01
    备考2024新高考新题型高三数学--马尔科夫链与概率不等式02
    备考2024新高考新题型高三数学--马尔科夫链与概率不等式03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备考2024新高考新题型高三数学--马尔科夫链与概率不等式

    展开
    这是一份备考2024新高考新题型高三数学--马尔科夫链与概率不等式,共9页。试卷主要包含了马尔科夫过程,概率不等式,5,乙药治愈率为0等内容,欢迎下载使用。

    1.马尔科夫过程
    1.1转移概率:对于有限状态集合,定义:为从状态到状态的转移概率.
    1.2马尔可夫链:若,即未来状态只受当前状态的影响,与之前的无关.
    1.3一维随机游走模型.(公众号:凌晨讲数学)
    设数轴上一个点,它的位置只能位于整点处,在时刻时,位于点,下一个时刻,它将以概率或者()向左或者向右平移一个单位.若记状态表示:在时刻该点位于位置,那么由全概率公式可得:
    另一方面,由于,代入上式可得:
    .
    进一步,我们假设在与处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,.随机游走模型是一个典型的马尔科夫过程.
    进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为,原地不动,其概率为,向右平移一个单位,其概率为,那么根据全概率公式可得:
    2.概率不等式
    2.1马尔科夫不等式
    设为一个非负随机变量,其数学期望为,则对任意,均有,
    马尔科夫不等式给出了随机变量取值不小于某正数的概率上界,阐释了随机变量尾部取值概率与其数学期望间的关系.
    证明:当为非负离散型随机变量时,马尔科夫不等式的证明如下:
    设的分布列为其中,则对任意,,其中符号表示对所有满足的指标所对应的求和.
    2.2切比雪夫不等式:
    设随机变量的期望为,方差为,则对任意,均有
    证明:对非负离散型随机变量及正数使用马尔科夫不等式,
    有.
    切比雪夫不等式可以在不需要知道随机变量分布的情况下只利用随机变量的数学期望及方差就可以对的概率分布进行估计,估计出随机变量落在内的可能性不低于,从而能够得出:如果随机变量具有越小的方差,那么概率越大,这意味着在数学期望附近周边随机变量有更高的集中度;如果随机变量具有越大的方差,那么概率越小,这意味着在数学期望附近周边随机变量有更小的集中度.
    二.典例分析
    例1.某同学在课外阅读时了解到概率统计中的切比雪夫不等式,该不等式可以使人们在随机变量的期望和方差存在但其分布末知的情况下,对事件“”的概率作出上限估计,其中为任意正实数.切比雪夫不等式的形式为:,其中是关于和的表达式.由于记忆模糊,该同学只能确定的具体形式是下列四个选项中的某一种.请你根据所学相关知识,确定该形式是( )
    A. B. C. D.
    解析:切比雪夫不等式的形式为:,由题知,则的具体形式为.故选:D.
    例2.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行次这样的操作,记甲口袋中黑球个数为,恰有1个黑球的概率为,则下列结论正确的是( )
    A.
    B.
    C.数列是等比数列
    D.的数学期望
    解析:由题意,,故A正确;
    ,,故B错误;当时,
    ,整理得,
    ,故可知是以为首项,以为公比的等比数列,故C正确;,,
    ,因,
    所以,
    ,故D正确,
    故选:ACD.
    例3.(2019全国1卷).为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
    (1)求的分布列;
    (2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设,.
    (i)证明:为等比数列;
    (ii)求,并根据的值解释这种试验方案的合理性.
    解析:(1)由题意可知所有可能的取值为:,,
    ;;
    则的分布列如下:
    (2),
    ,,
    (i)

    整理可得:
    是以为首项,为公比的等比数列
    (ii)由(i)知:,,,……,,作和可得:,
    表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种实验方案合理.
    例4.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.
    (1)求第2次投篮的人是乙的概率;
    (2)求第次投篮的人是甲的概率;
    (3)已知:若随机变量服从两点分布,且,则.记前次(即从第1次到第次投篮)中甲投篮的次数为,求.
    解析:(1)记“第次投篮的人是甲”为事件,“第次投篮的人是乙”为事件,
    所以,
    .
    (2)设,依题可知,,则

    即,构造等比数列,设,解得,则,又,所以是首项为,公比为的等比数列,即.
    (3)因为,,所以当时,,故.
    例5.随机变量的概念是俄国数学家切比雪夫在十九世纪中叶建立和提倡使用的.切比雪夫在数论、概率论、函数逼近论、积分学等方面均有所建树,他证明了如下以他名字命名的离散型切比雪夫不等式:设为离散型随机变量,则,其中为任意大于0的实数.切比雪夫不等式可以使人们在随机变量的分布未知的情况下,对事件的概率作出估计.
    (1)证明离散型切比雪夫不等式;
    (2)应用以上结论,回答下面问题:已知正整数.在一次抽奖游戏中,有个不透明的箱子依次编号为,编号为的箱子中装有编号为的个大小、质地均相同的小球.主持人邀请位嘉宾从每个箱子中随机抽取一个球,记从编号为的箱子中抽取的小球号码为,并记.对任意的,是否总能保证(假设嘉宾和箱子数能任意多)?并证明你的结论.
    附:可能用到的公式(数学期望的线性性质):对于离散型随机变量满足,则有.
    解析:(1)设的所有可能取值为取的概率为.
    则,
    (2)由参考公式,.
    ,用到
    ,故. 于是,我们可以得到当时,
    因此,不能保证.
    例6.在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号次,每次发射信号“0”和“1”是等可能的.记发射信号1的次数为.
    (1)当时,求
    (2)已知切比雪夫不等式:对于任一随机变量,若其数学期望和方差均存在,则对任意正实数,有.根据该不等式可以对事件“”的概率作出下限估计.为了至少有的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数的最小值.
    解析:(1)由已知,
    所以

    (2)由已知,所以,
    若,则,即,即.
    由切比雪夫不等式,要使得至少有的把握使发射信号“1”的频率在与之间,则,解得,所以估计信号发射次数的最小值为1250;综上,,估计信号发射次数的最小值为1250.
    例7.(23届杭州二模)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,,,,,…,那么时刻的状态的条件概率仅依赖前一状态,即.
    现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.
    假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B元,赌徒停止赌博.记赌徒的本金为,赌博过程如下图的数轴所示.
    当赌徒手中有n元(,)时,最终输光的概率为,请回答下列问题:
    (1)请直接写出与的数值.
    (2)证明是一个等差数列,并写出公差d.
    (3)当时,分别计算,时,的数值,并结合实际,解释当时,的统计含义.
    解析:(1)当时,赌徒已经输光了,因此.当时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率.
    (2)记M:赌徒有n元最后输光的事件,N:赌徒有n元上一场赢的事件,
    ,即,
    所以,所以是一个等差数列,设,则,累加得,故,得,
    (3),由得,即,当时,,当时,,当时,,因此可知久赌无赢家,
    即便是一个这样看似公平的游戏,只要赌徒一直玩下去就会的概率输光.
    相关试卷

    2024高考数学新试卷结构下的压轴题研究:7.马尔科夫链与概率不等式: 这是一份2024高考数学新试卷结构下的压轴题研究:7.马尔科夫链与概率不等式,共10页。试卷主要包含了马尔科夫过程与概率不等式,马尔科夫过程,概率不等式,5,乙药治愈率为0等内容,欢迎下载使用。

    高考数学二轮专题复习——概率递推与马尔科夫(学生及教师版): 这是一份高考数学二轮专题复习——概率递推与马尔科夫(学生及教师版),文件包含概率递推与马尔科夫教师版pdf、概率递推与马尔科夫学生版pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    2024年高三培优讲义39---马尔科夫链(与数列结合的概率递推问题): 这是一份2024年高三培优讲义39---马尔科夫链(与数列结合的概率递推问题),共34页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        备考2024新高考新题型高三数学--马尔科夫链与概率不等式
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map