专题一 培优点1 切线放缩--2024年高考数学复习二轮讲义
展开考点一 单切线放缩
常见的切线放缩:∀x∈R都有ex≥x+1.当x>-1时,ln(x+1)≤x.当x>0时,x>sin x;当x<0时,x
(1)若a=1,证明:当x∈[0,1]时,f(x)≥0;
(2)若a=-1,证明:当x∈[0,+∞)时,f(x)≤2ex-2.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 该方法适用于凹函数与凸函数且它们的凹凸性相反的问题(拆成两个函数),两函数有斜率相同的切线,这是切线放缩的基础,引入一个中间量,分别证明两个不等式成立,然后利用不等式的传递性即可,难点在合理拆分函数,寻找它们斜率相等的切线隔板.
跟踪演练1 (2023·柳州模拟)已知函数f(x)=ln x+eq \f(a,x)-2x.
(1)当a>0时,讨论f(x)的单调性;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)证明:ex+eq \f(a-2x2-2x,x)>f(x).
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
考点二 双切线放缩
例2 (2023·福州模拟)已知函数f(x)=xln x-x.若f(x)=b有两个实数根x1,x2,且x1
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 含有两个零点的f(x)的解析式(可能含有参数x1,x2),告知方程f(x)=b有两个实根,要证明两个实根之差小于(或大于)某个表达式.求解策略是画出f(x)的图象,并求出f(x)在两个零点处(有时候不一定是零点处)的切线方程(有时候不是找切线,而是找过曲线上某两点的直线),然后严格证明曲线f(x)在切线(或所找直线)的上方或下方,进而对x1,x2作出放大或者缩小,从而实现证明.
跟踪演练2 (2023·山东省实验中学模拟)已知函数f(x)=(x+1)(ex-1),若函数g(x)=f(x)-m(m>0)有两个零点x1,x2,且x1
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
专题一 培优点1 切线放缩2024年高考数学: 这是一份专题一 培优点1 切线放缩2024年高考数学,共1页。试卷主要包含了已知函数f=ln等内容,欢迎下载使用。
2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题一 培优点1 切线放缩11: 这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题一 培优点1 切线放缩11,共3页。试卷主要包含了当x>-1时,ln≤x等内容,欢迎下载使用。
2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题一 培优点1 切线放缩6: 这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题一 培优点1 切线放缩6,共1页。试卷主要包含了已知函数f=ln等内容,欢迎下载使用。