2024年中考数学必考考点总结题型专训专题26矩形篇(原卷版+解析)
展开矩形的定义:
有一个角是直角的平行四边形是矩形。
矩形的性质:
①具有平行四边形的一切性质。
②矩形的四个角都是直角。
③矩形的对角线相等。
④矩形既是一个中心对称图形,也是轴对称图形。对角线交点是对称中心,过一组对边中点的直线是矩形的对称。
⑤由矩形的对角线的性质可知,直角三角形斜边上的中线等于斜边的一半。
微专题
1. (2023•无锡)雪花、风车……展示着中心对称的美,利用中心对称,可以探索并证明图形的性质.请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )
A.扇形B.平行四边形C.等边三角形D.矩形
2. (2023•安徽)两个矩形的位置如图所示,若∠1=α,则∠2=( )
A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α
3. (2023•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是 .
4. (2023•青海)如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB=3,BC=4,则图中阴影部分的面积为 .
第4题 第5题
5. (2023•吉林)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且AF=AC,连接EF.若AC=10,则EF= .
6. (2023•黔东南州)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是 .
第6题 第7题
7. (2023•十堰)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF,AG分别架在墙体的点B,C处,且AB=AC,侧面四边形BDEC为矩形.若测得∠FBD=55°,则∠A= °.
8. (2023•宜昌)如图,在矩形ABCD中,E是边AD上一点,F,G分别是BE,CE的中点,连接AF,DG,FG,若AF=3,DG=4,FG=5,矩形ABCD的面积为 .
第8题 第9题
9. (2023•邵阳)已知矩形的一边长为6cm,一条对角线的长为10cm,则矩形的面积为 cm2.
10. (2023•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.
(1)若a,b是整数,则PQ的长是 ;
(2)若代数式a2﹣2ab﹣b2的值为零,则的值是 .
11. (2023•日照)如图,矩形ABCD为一个正在倒水的水杯的截面图,杯中水面与CD的交点为E,当水杯底面BC与水平面的夹角为27°时,∠AED的大小为( )
第11题 第12题
A.27°B.53°C.57°D.63°
12. (2023•包头)如图,在矩形ABCD中,AD>AB,点E,F分别在AD,BC边上,EF∥AB,AE=AB,AF与BE相交于点O,连接OC.若BF=2CF,则OC与EF之间的数量关系正确的是( )
A.2OC=EFB.OC=2EFC.2OC=EFD.OC=EF
13. (2023•泰安)如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为( )
B.C.﹣D.﹣2
考点二:矩形的判定
知识回顾
直接判定:
有三个角(四个角)都是直角的四边形是矩形。
利用平行四边形判定:
①定义:有一个角是直角(邻边相互垂直)的平行四边形是矩形。
②对角线的特殊性:对角线相等的平行四边形是矩形。
微专题
14. (2023•聊城)要检验一个四边形的桌面是否为矩形,可行的测量方案是( )
A.测量两条对角线是否相等
B.度量两个角是否是90°
C.测量两条对角线的交点到四个顶点的距离是否相等
D.测量两组对边是否分别相等
15. (2023•恩施州)如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )
A.当t=4s时,四边形ABMP为矩形
B.当t=5s时,四边形CDPM为平行四边形
C.当CD=PM时,t=4s
D.当CD=PM时,t=4s或6s
16. (2023•陕西)在下列条件中,能够判定▱ABCD为矩形的是( )
A.AB=ADB.AC⊥BDC.AB=ACD.AC=BD
17. (2023•陕西)在下列条件中,能够判定▱ABCD为矩形的是( )
A.AB=ACB.AC⊥BDC.AB=ADD.AC=BD
18. (2023•怀化)下列说法正确的是( )
A.相等的角是对顶角
B.对角线相等的四边形是矩形
C.三角形的外心是它的三条角平分线的交点
D.线段垂直平分线上的点到线段两端的距离相等
19. (2023•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是 .
20(多选). (2023•潍坊)利用反例可以判断一个命题是错误的,下列命题错误的是( )
A.若ab=0,则a=0
B.对角线相等的四边形是矩形
C.函数y=的图象是中心对称图形
D.六边形的外角和大于五边形的外角和
专题26 矩形
考点一:矩形的性质
知识回顾
矩形的定义:
有一个角是直角的平行四边形是矩形。
矩形的性质:
①具有平行四边形的一切性质。
②矩形的四个角都是直角。
③矩形的对角线相等。
④矩形既是一个中心对称图形,也是轴对称图形。对角线交点是对称中心,过一组对边中点的直线是矩形的对称。
⑤由矩形的对角线的性质可知,直角三角形斜边上的中线等于斜边的一半。
微专题
1. (2023•无锡)雪花、风车……展示着中心对称的美,利用中心对称,可以探索并证明图形的性质.请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )
A.扇形B.平行四边形C.等边三角形D.矩形
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A.扇形是轴对称图形,不是中心对称图形,故此选项不合题意;
B.平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;
C.等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;
D.矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;
故选:B.
2. (2023•安徽)两个矩形的位置如图所示,若∠1=α,则∠2=( )
A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α
【分析】根据矩形的性质和三角形外角的性质,可以用含α的式子表示出∠2.
【解答】解:由图可得,
∠1=90°+∠3,
∵∠1=α,
∴∠3=α﹣90°,
∵∠3+∠2=90°,
∴∠2=90°﹣∠3=90°﹣(α﹣90°)=90°﹣α+90°=180°﹣α,
故选:C.
3. (2023•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是 .
【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;
②当P1E=AE=5时,求出BE,由勾股定理求出P1B,再由勾股定理求出底边AP1即可.
【解答】解:如图所示,
①当AP=AE=5时,
∵∠BAD=90°,
∴△AEP是等腰直角三角形,
∴底边PE=AE=5;
②当P1E=AE=5时,
∵BE=AB﹣AE=8﹣5=3,∠B=90°,
∴P1B=,
∴底边AP1=;
综上所述:等腰三角形AEP1的底边长为5或4;
故答案为:5或4.
4. (2023•青海)如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB=3,BC=4,则图中阴影部分的面积为 .
【分析】首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△BDC的面积.
【解答】解:∵四边形ABCD是矩形,AB=3,
∴OA=OC,AB=CD=3,AD∥BC,
∴∠AEO=∠CFO;
又∵∠AOE=∠COF,
在△AOE和△COF中,
,
∴△AOE≌△COF,
∴S△AOE=S△COF,
∴S阴影=S△AOE+S△BOF+S△COD=S△COF+S△BOF+S△COD=S△BCD,
∵S△BCD=BC•CD==6,
∴S阴影=6.
故答案为6.
5. (2023•吉林)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且AF=AC,连接EF.若AC=10,则EF= .
【分析】由AF=AC可得点F为AO中点,从而可得EF为△AOD的中位线,进而求解.
【解答】解:在矩形ABCD中,AO=OC=AC,AC=BD=10,
∵AF=AC,
∴AF=AO,
∴点F为AO中点,
又∵点E为边AD的中点,
∴EF为△AOD的中位线,
∴EF=OD=BD=.
故答案为:.
6. (2023•黔东南州)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是 .
【分析】先证四边形OCED是平行四边形,得OC=DE,OD=CE,再由矩形的性质得OC=OD=5,则OC=OD=CE=DE,得平行四边形OCED是菱形,即可得出结论.
【解答】解:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∴OC=DE,OD=CE,
∵矩形ABCD的对角线AC,BD相交于点O,
∴OC=AC=5,OD=BD,BD=AC,
∴OC=OD=5,
∴OC=OD=CE=DE,
∴平行四边形OCED是菱形,
∴菱形OCED的周长=4OC=4×5=20,
故答案为:20.
7. (2023•十堰)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF,AG分别架在墙体的点B,C处,且AB=AC,侧面四边形BDEC为矩形.若测得∠FBD=55°,则∠A= °.
【分析】利用矩形的性质可得∠DBC=90°,从而利用平角定义求出∠ABC的度数,然后利用等腰三角形的性质可得∠ABC=∠ACB=35°,最后利用三角形内角和定理进行计算即可解答.
【解答】解:∵四边形BDEC为矩形,
∴∠DBC=90°,
∵∠FBD=55°,
∴∠ABC=180°﹣∠DBC﹣∠FBD=35°,
∵AB=AC,
∴∠ABC=∠ACB=35°,
∴∠A=180°﹣∠ABC﹣∠ACB=110°,
故答案为:110.
8. (2023•宜昌)如图,在矩形ABCD中,E是边AD上一点,F,G分别是BE,CE的中点,连接AF,DG,FG,若AF=3,DG=4,FG=5,矩形ABCD的面积为 .
【分析】由矩形的性质得出∠BAE=∠CDE=90°,AD∥BC,由直角三角形斜边上中线的性质及三角形中位线的性质求出BE=6,CE=8,BC=10,由勾股定理的逆定理得出△BCE是直角三角形,∠BEC=90°,进而求出=24,即可求出矩形ABCD的面积.
【解答】解:∵四边形ABCD是矩形,
∴∠BAE=∠CDE=90°,AD∥BC,
∵F,G分别是BE,CE的中点,AF=3,DG=4,FG=5,
∴BE=2AF=6,CE=2DG=8,BC=2FG=10,
∴BE2+CE2=BC2,
∴△BCE是直角三角形,∠BEC=90°,
∴==24,
∵AD∥BC,
∴S矩形ABCD=2S△BCE=2×24=48,
故答案为:48.
9. (2023•邵阳)已知矩形的一边长为6cm,一条对角线的长为10cm,则矩形的面积为 cm2.
【分析】利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.
【解答】解:∵长方形的一条对角线的长为10cm,一边长为6cm,
∴另一边长==8cm,
∴它的面积为8×6=48cm2.
故答案为:48.
10. (2023•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.
(1)若a,b是整数,则PQ的长是 ;
(2)若代数式a2﹣2ab﹣b2的值为零,则的值是 .
【分析】(1)直接根据线段的差可得结论;
(2)先把b当常数解方程:a2﹣2ab﹣b2=0,a=b+b(负值舍),根据四个矩形的面积都是5表示小矩形的宽,最后计算面积的比,化简后整体代入即可解答.
【解答】解:(1)由图可知:PQ=a﹣b,
故答案为:a﹣b;
(2)∵a2﹣2ab﹣b2=0,
∴a2﹣b2=2ab,(a﹣b)2=2b2,
∴a=b+b(负值舍),
∵四个矩形的面积都是5.AE=a,DE=b,
∴EP=,EN=,
则======3+2.
故答案为:3+2.
11. (2023•日照)如图,矩形ABCD为一个正在倒水的水杯的截面图,杯中水面与CD的交点为E,当水杯底面BC与水平面的夹角为27°时,∠AED的大小为( )
A.27°B.53°C.57°D.63°
【分析】根据题意可知AE∥BF,∠EAB=∠ABF,∠ABF+27°=90°,等量代换求出∠EAB,再根据平行线的性质求出∠AED.
【解答】解:如图,
∵AE∥BF,
∴∠EAB=∠ABF,
∵四边形ABCD是矩形,
∴AB∥CD,∠ABC=90°,
∴∠ABF+27°=90°,
∴∠ABF=63°,
∴∠EAB=63°,
∵AB∥CD,
∴∠AED=∠EAB=63°.
故选:D.
12. (2023•包头)如图,在矩形ABCD中,AD>AB,点E,F分别在AD,BC边上,EF∥AB,AE=AB,AF与BE相交于点O,连接OC.若BF=2CF,则OC与EF之间的数量关系正确的是( )
A.2OC=EFB.OC=2EFC.2OC=EFD.OC=EF
【分析】过点O作OH⊥BC于点H,得出四边形ABFE是正方形,再根据线段等量关系得出CF=EF=2OH,根据勾股定理得出OC=OH,即可得出结论.
【解答】解:过点O作OH⊥BC于点H,
∵在矩形ABCD中,EF∥AB,AE=AB,
∴四边形ABFE是正方形,
∴OH=EF=BF=BH=HF,
∵BF=2CF,
∴CH=EF=2OH,
∴OC===OH,
即2OC=EF,
故选:A.
13. (2023•泰安)如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为( )
A.B.C.﹣D.﹣2
【分析】如图,取AD的中点O,连接OB,OM.证明∠AMD=90°,推出OM=AD=2,点M的运动轨迹是以O为圆心,2为半径的⊙O.利用勾股定理求出OB,可得结论.
【解答】解:如图,取AD的中点O,连接OB,OM.
∵四边形ABCD是矩形,
∴∠BAD=90°,AD=BC=4,
∴∠BAP+∠DAM=90°,
∵∠ADM=∠BAP,
∴∠ADM+∠DAM=90°,
∴∠AMD=90°,
∵AO=OD=2,
∴OM=AD=2,
∴点M的运动轨迹是以O为圆心,2为半径的⊙O.
∵OB===,
∴BM≥OB﹣OM=﹣2,
∴BM的最小值为﹣2.
故选:D.
考点二:矩形的判定
知识回顾
直接判定:
有三个角(四个角)都是直角的四边形是矩形。
利用平行四边形判定:
①定义:有一个角是直角(邻边相互垂直)的平行四边形是矩形。
②对角线的特殊性:对角线相等的平行四边形是矩形。
微专题
14. (2023•聊城)要检验一个四边形的桌面是否为矩形,可行的测量方案是( )
A.测量两条对角线是否相等
B.度量两个角是否是90°
C.测量两条对角线的交点到四个顶点的距离是否相等
D.测量两组对边是否分别相等
【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
【解答】解:A、测量两条对角线是否相等,不能判定为平行四边形,更不能判定为矩形,故选项A不符合题意;
B、度量两个角是否是90°,不能判定为平行四边形,更不能判定为矩形,故选项B不符合题意;
C、测量对角线交点到四个顶点的距离是否都相等,可以判定是否为矩形,故选项C符合题意;
D、测量两组对边是否相等,可以判定为平行四边形,故选项D不符合题意;
故选:C.
15. (2023•恩施州)如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )
A.当t=4s时,四边形ABMP为矩形
B.当t=5s时,四边形CDPM为平行四边形
C.当CD=PM时,t=4s
D.当CD=PM时,t=4s或6s
【分析】根据题意,表示出DP,BM,AP和CM的长,当四边形ABMP为矩形时,根据AP=BM,列方程求解即可;当四边形CDPM为平行四边形,根据DP=CM,列方程求解即可;当CD=PM时,分两种情况:①四边形CDPM是平行四边形,②四边形CDPM是等腰梯形,分别列方程求解即可.
【解答】解:根据题意,可得DP=tcm,BM=tcm,
∵AD=10cm,BC=8cm,
∴AP=(10﹣t)cm,CM=(8﹣t)cm,
当四边形ABMP为矩形时,AP=BM,
即10﹣t=t,
解得t=5,
故A选项不符合题意;
当四边形CDPM为平行四边形,DP=CM,
即t=8﹣t,
解得t=4,
故B选项不符合题意;
当CD=PM时,分两种情况:
①四边形CDPM是平行四边形,
此时CM=PD,
即8﹣t=t,
解得t=4,
②四边形CDPM是等腰梯形,
过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,如图所示:
则∠MGP=∠CHD=90°,
∵PM=CD,GM=HC,
∴△MGP≌△CHD(HL),
∴GP=HD,
∵AG=AP+GP=10﹣t+,
又∵BM=t,
∴10﹣t+=t,
解得t=6,
综上,当CD=PM时,t=4s或6s,
故C选项不符合题意,D选项符合题意,
故选:D.
16. (2023•陕西)在下列条件中,能够判定▱ABCD为矩形的是( )
A.AB=ADB.AC⊥BDC.AB=ACD.AC=BD
【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.
【解答】解:A.∵▱ABCD中,AB=AD,
∴▱ABCD是菱形,故选项A不符合题意;
B.∵▱ABCD中,AC⊥BD,
∴▱ABCD是菱形,故选项B不符合题意;
C.▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项C不符合题意;
D.∵▱ABCD中,AC=BD,
∴▱ABCD是矩形,故选项D符合题意;
故选:D.
17. (2023•陕西)在下列条件中,能够判定▱ABCD为矩形的是( )
A.AB=ACB.AC⊥BDC.AB=ADD.AC=BD
【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.
【解答】解:A、▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项A不符合题意;
B、∵▱ABCD中,AC⊥BD,
∴▱ABCD是菱形,故选项B不符合题意;
C、∵▱ABCD中,AB=AD,
∴▱ABCD是菱形,故选项C不符合题意;
D、∵▱ABCD中,AC=BD,
∴▱ABCD是矩形,故选项D符合题意;故选:D.
18. (2023•怀化)下列说法正确的是( )
A.相等的角是对顶角
B.对角线相等的四边形是矩形
C.三角形的外心是它的三条角平分线的交点
D.线段垂直平分线上的点到线段两端的距离相等
【分析】根据对顶角的定义,矩形的判定,三角形的外心,线段垂直平分线的性质可得出答案.
【解答】解:A、相等的角不一定是对顶角,故本选项说法错误,不符合题意;
B、对角线相等的四边形不一定是矩形,故本选项说法错误,不符合题意;
C、三角形的外心是它的三条边的垂直平分线的交点,故本选项说法错误,不符合题意;
D、线段垂直平分线上的点到线段两端的距离相等,故本选项符合题意.
故选:D.
19. (2023•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是 .
【分析】先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.
【解答】解:需添加的一个条件是∠A=90°,理由如下:
∵AB∥DC,AD∥BC,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴平行四边形ABCD是矩形,
故答案为:∠A=90°(答案不唯一).
20(多选). (2023•潍坊)利用反例可以判断一个命题是错误的,下列命题错误的是( )
A.若ab=0,则a=0
B.对角线相等的四边形是矩形
C.函数y=的图象是中心对称图形
D.六边形的外角和大于五边形的外角和
【分析】由等式的性质、矩形的判定、反比例函数的图象以及多边形的外角和分别对各个选项进行判断即可.
【解答】解:A、若ab=0,则a=0或b=0,故选项A符合题意;
B、对角线相等的平行四边形是矩形,故选项B符合题意;
C、函数y=的图象是中心对称图形,故选项C不符合题意;
D、六边形的外角和=五边形的外角和=360°,故选项D符合题意;
故选:ABD.
2024年中考数学必考考点总结题型专训专题25菱形篇(原卷版+解析): 这是一份2024年中考数学必考考点总结题型专训专题25菱形篇(原卷版+解析),共32页。
2024年中考数学必考考点总结题型专训专题23多边形篇(原卷版+解析): 这是一份2024年中考数学必考考点总结题型专训专题23多边形篇(原卷版+解析),共13页。
2024年中考数学必考考点总结题型专训专题16反比例函数篇(原卷版+解析): 这是一份2024年中考数学必考考点总结题型专训专题16反比例函数篇(原卷版+解析),共41页。试卷主要包含了 (2023•广东)点等内容,欢迎下载使用。