【讲通练透】专题09 三角函数及应用-2021-2023年高考真题分享汇编(全国通用)
展开一、高考真题汇编的意义
1、增强高考考生的复习动力和信心。
2、提高高考考生的复习效率。使考生能够更好地梳理复习的重点,提高复习效率。
3、加深考生对知识点的理解和掌握。
二、高考真题汇编的内容
1、高考试题收录。高考真题汇编收录高考真题,涵盖了高考考试的各个学科。
2、答案解析。高考真题汇编提供了详细的答案解析,加深考生对知识点的理解和掌握。
3、复习指导。高考真题汇编还提供了一些复习指导,提高复习效率。
三、高考真题汇编的重要性
高考真题汇编不仅可以提高考生的复习动力和信心,增强考生的复习效率,而且还可以加深考生对知识点的理解和掌握,使考生更好地把握考试方向,为高考复习提供了有力的支持。本文介绍了高考真题汇编的意义、内容和重要性,分析了它对高考考生的重要作用,强调了它在高考复习中的重要性。
专题09 三角函数
知识点目录
知识点1:三角函数的图像与性质:奇偶性、单调性、奇偶性
知识点2:值域与最值问题
知识点3:伸缩变换问题
知识点4:求解析式问题
知识点5:三角恒等变换
知识点6:与的取值与范围问题
知识点7:弧长公式
近三年高考真题
知识点1:三角函数的图像与性质:奇偶性、单调性、奇偶性
1.(2023•全国)已知函数,则
A.上单调递增B.上单调递增
C.上单调递减D.上单调递增
2.(2022•天津)已知,关于该函数有下列四个说法:
①的最小正周期为;
②在,上单调递增;
③当,时,的取值范围为,;
④的图象可由的图象向左平移个单位长度得到.
以上四个说法中,正确的个数为
A.1B.2C.3D.4
3.(2021•北京)函数是
A.奇函数,且最大值为2B.偶函数,且最大值为2
C.奇函数,且最大值为D.偶函数,且最大值为
4.(2022•北京)已知函数,则
A.在,上单调递减
B.在,上单调递增
C.在上单调递减
D.在,上单调递增
5.(2021•新高考Ⅰ)下列区间中,函数单调递增的区间是
A.B.,C.D.,
6.(2021•乙卷(文))函数的最小正周期和最大值分别是
A.和B.和2C.和D.和2
7.(多选题)(2022•新高考Ⅱ)已知函数的图像关于点,中心对称,则
A.在区间单调递减
B.在区间,有两个极值点
C.直线是曲线的对称轴
D.直线是曲线的切线
8.(2022•上海)函数的周期为 .
9.(2023•北京)已知函数,,.
(Ⅰ)若,求的值;
(Ⅱ)若在,上单调递增,且,再从条件①、条件②、条件③这三个条件中选择一个作为已知,求、的值.
条件①:;
条件②:;
条件③:在,上单调递减.
注:如果选择多个条件分别解答,按第一个解答计分.
知识点2:值域与最值问题
10.(2021•浙江)设函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在,上的最大值.
11.(2023•上海)已知,记在,的最小值为,在,的最小值为,则下列情况不可能的是
A.,B.,C.,D.,
12.(2021•浙江)已知,,是互不相同的锐角,则在,,三个值中,大于的个数的最大值是
A.0B.1C.2D.3
知识点3:伸缩变换问题
13.(2021•乙卷(文))把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则
A.B.C.D.
14.(2023•甲卷)已知为函数向左平移个单位所得函数,则与的交点个数为
A.1B.2C.3D.4
15.(2022•浙江)为了得到函数的图象,只要把函数图象上所有的点
A.向左平移个单位长度B.向右平移个单位长度
C.向左平移个单位长度D.向右平移个单位长度
知识点4:求解析式问题
16.(2023•乙卷)已知函数在区间,单调递增,直线和为函数的图像的两条对称轴,则
A.B.C.D.
17.(2023•天津)已知函数的一条对称轴为直线,一个周期为4,则的解析式可能为
A.B.C.D.
18.(2022•新高考Ⅰ)记函数的最小正周期为.若,且的图像关于点,中心对称,则
A.1B.C.D.3
19.(2023•新高考Ⅱ)已知函数,如图,,是直线与曲线的两个交点,若,则 .
20.(2021•甲卷(文)已知函数的部分图像如图所示,则 .
21.(2021•甲卷(理))已知函数的部分图像如图所示,则满足条件的最小正整数为 .
知识点5:三角恒等变换
22.(2023•新高考Ⅰ)已知,,则
A.B.C.D.
23.(2023•新高考Ⅱ)已知为锐角,,则
A.B.C.D.
24.(2023•乙卷(文))若,,则 .
25.(2023•上海)已知,则 .
26.(2022•新高考Ⅱ)若,则
A.B.C.D.
27.(2021•新高考Ⅰ)若,则
A.B.C.D.
28.(2021•甲卷(文))若,,则
A.B.C.D.
29.(2022•上海)若,则 .
30.(2021•乙卷(文))
A.B.C.D.
31.(2022•浙江)若,,则 .
知识点6:与的取值与范围问题
32.(2022•甲卷(理))设函数在区间恰有三个极值点、两个零点,则的取值范围是
A.,B.,C.,D.,
33.(2023•新高考Ⅰ)已知函数在区间,有且仅有3个零点,则的取值范围是 .
34.(2022•乙卷)记函数,的最小正周期为.若,为的零点,则的最小值为 .
35.(2021•北京)若点关于轴的对称点为,,则的一个取值为 .
36.(2021•上海)已知,对任意的,,都存在,,使得成立,则下列选项中,可能的值是
A.B.C.D.
A.B.C.D.
知识点7:弧长公式
37.(2022•甲卷(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,是以为圆心,为半径的圆弧,是的中点,在上,.“会圆术”给出的弧长的近似值的计算公式:.当,时,
A.B.C.D.
【讲通练透】专题08 平面解析几何(解答题)-2021-2023年高考真题分享汇编(全国通用): 这是一份【讲通练透】专题08 平面解析几何(解答题)-2021-2023年高考真题分享汇编(全国通用),文件包含专题08平面解析几何解答题全国通用原卷版docx、专题08平面解析几何解答题全国通用解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
【讲通练透】专题06 立体几何(解答题)(文)-2021-2023年高考真题分享汇编(全国通用): 这是一份【讲通练透】专题06 立体几何(解答题)(文)-2021-2023年高考真题分享汇编(全国通用),文件包含专题06立体几何解答题文全国通用原卷版docx、专题06立体几何解答题文全国通用解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
【讲通练透】专题04 导数及其应用(解答题)(理)-2021-2023年高考真题分享汇编(全国通用): 这是一份【讲通练透】专题04 导数及其应用(解答题)(理)-2021-2023年高考真题分享汇编(全国通用),文件包含专题04导数及其应用解答题理全国通用原卷版docx、专题04导数及其应用解答题理全国通用解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。