湖南省张家界市2023-2024学年高二上学期期末联考数学试题(Word版附解析)
展开本试卷共4页,22小题,满分150分,考试用时120分钟.
注意事项:
1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.将条形码横贴在答题卡右上角“条形码粘贴处”.
2.作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液.不按以上要求作答无效.
4.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 35是等差数列3,5,7,9,的( )
A. 第16项B. 第17项C. 第18项D. 第19项
2. 若直线经过两点,则直线的倾斜角为( )
A. B. C. D.
3. 抛物线的焦点到直线的距离等于( )
A. 1B. C. D. 4
4. 已知向量若与、共面,则实数( )
A. B. C. D.
5. 若直线被圆所截得的弦长为,则实数a的值为( )
A 0B. 4C. -2D. 0或4
6. 音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:若以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“徵”;“徵”经过一次“益”,频率变为原来的,得到“商”;.....依次损益交替变化,获得了“宫、徵、商、羽、角”五个音阶.据此可推得( )
A. “徵、商、羽”的频率成等比数列
B. “宫、徵、商”的频率成等比数列
C. “商、羽、角”的频率成等比数列
D. “宫、商、角”的频率成等比数列
7. 设,分别为椭圆与双曲线的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的取值范围为( )
A. B. C. D.
8. 设,则( )
A. B.
C. D.
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9. 已知直线l:,则( )
A. 直线l过点B. 直线l的斜率为
C. 直线l的倾斜角为D. 直线l在轴上的截距为1
10. 数列的前项和为,已知,则下列说法正确的是( )
A. B. 数列是等差数列
C. 当时,D. 当或4时,取得最大值
11. 如图,在棱长为2的正方体中,分别为,的中点,则( )
A.
B. ⊥平面
C. 异面直线与所成角的大小为
D. 平面到平面的距离等于
12. 已知双曲线的左右顶点为,,左右焦点为,,直线与双曲线的左右两支分别交于,两点,则( )
A. 若,则的面积为
B. 直线与双曲线的两条渐近线分别交于,两点,则
C. 若的斜率的范围为,则的斜率的范围为
D. 存在直线方程为,使得弦的中点坐标为
三、填空题:本题共4小题,每小题5分,共20分.
13. 已知,,且,则_______.
14. 已知抛物线的准线方程为,则抛物线的标准方程为_________.
15. 若函数在上单调递减,则实数a的取值范围是______.
16. 记上的可导函数的导函数为,满足的数列 称为“牛顿数列”.若函数 ,数列 为牛顿数列,设 已知,, 则____________,数列的前项和为,若不等式 对任意的恒成立,则的最大值为___________.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17. 已知函数,且.
(1)求曲线在点处切线方程;
(2)求函数极值.
18. 已知直线:和圆:.
(1)求圆C的圆心坐标和半径;
(2)求经过圆的圆心且与直线垂直的直线方程.
19. 已知等比数列的前项和为,,且,,成等差数列.
(1)求数列的通项公式;
(2)已知,求数列的前项和.
20. 如图,平面,,,,,,点E,F,M分别为,,的中点.
(1)求证:平面;
(2)求平面与平面的夹角的大小.
21. 在直角坐标系中,已知椭圆左右焦点分别为,,离心率是,点P为椭圆短轴的一个端点,的面积是.
(1)求椭圆的方程;
(2)若动直线与椭圆交于两点,且恒有,是否存在一个以原点为圆心的定圆,使得动直线始终与定圆相切?若存在,求出圆的方程,若不存在,请说明理由.
22. 已知函数,,.
(1)讨论函数的单调性;
湖南省部分学校2023-2024学年高一上学期期末联考数学试题试卷(Word版附解析): 这是一份湖南省部分学校2023-2024学年高一上学期期末联考数学试题试卷(Word版附解析),文件包含湖南省部分学校2023-2024学年高一上学期期末联考数学试题原卷版docx、湖南省部分学校2023-2024学年高一上学期期末联考数学试题Word版含解析docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
湖南省部分学校2023-2024学年高二上学期期末联合考试数学试题(Word版附解析): 这是一份湖南省部分学校2023-2024学年高二上学期期末联合考试数学试题(Word版附解析),共20页。试卷主要包含了本试卷主要考试内容等内容,欢迎下载使用。
湖南省张家界市2023-2024学年高一上学期期末联考数学试题(Word版附解析): 这是一份湖南省张家界市2023-2024学年高一上学期期末联考数学试题(Word版附解析),共18页。试卷主要包含了 英国数学家泰勒,83B等内容,欢迎下载使用。