搜索
    上传资料 赚现金
    第11讲 勾股定理与锐角三角函数(易错点梳理+微练习)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第11讲 勾股定理与锐角三角函数(易错点梳理微练习)(原卷版)-2022年中考数学大复习(知识点·易错点·题型训练·压轴题组).doc
    • 解析
      第11讲 勾股定理与锐角三角函数(易错点梳理微练习)(解析版)-2022年中考数学大复习(知识点·易错点·题型训练·压轴题组).doc
    第11讲  勾股定理与锐角三角函数(易错点梳理+微练习)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组)01
    第11讲  勾股定理与锐角三角函数(易错点梳理+微练习)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组)02
    第11讲  勾股定理与锐角三角函数(易错点梳理+微练习)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组)03
    第11讲  勾股定理与锐角三角函数(易错点梳理+微练习)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组)01
    第11讲  勾股定理与锐角三角函数(易错点梳理+微练习)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组)02
    第11讲  勾股定理与锐角三角函数(易错点梳理+微练习)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组)03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第11讲 勾股定理与锐角三角函数(易错点梳理+微练习)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组)

    展开
    这是一份第11讲 勾股定理与锐角三角函数(易错点梳理+微练习)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组),文件包含第11讲勾股定理与锐角三角函数易错点梳理+微练习原卷版-2022年中考数学大复习知识点·易错点·题型训练·压轴题组doc、第11讲勾股定理与锐角三角函数易错点梳理+微练习解析版-2022年中考数学大复习知识点·易错点·题型训练·压轴题组doc等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    易错点梳理
    易错点01 利用勾股定理解题漏解
    在题目中没有明确哪个角为直角时,常需要分类讨论,不可漏解。
    易错点02 利用勾股定理弄错第三边
    在利用勾股定理计算时,误认为第三边为斜边,其实第三边可能是斜边,也可能是直角边。
    易错点03 不能正确理解坡度的概念
    坡度是指坡面的垂直高度h和水平宽度l的比值,而并非度数。
    易错点04 误解仰角与俯角的概念
    仰角和俯角是指视线与水平线的夹角,而非视线与铅垂线的夹角。
    易错点05 忽略解直角三角形的前提条件
    只有在直角三角形中才能解直角三角形,没有直角三角形时需要通过作辅助线构造直角三角形求解。
    例题分析
    考向01 勾股定理
    例题1:(2021·山东李沧·九年级期中)如图,已知矩形纸片ABCD的两边AB=4,BC=2,过点B折叠纸片,使点A落在边CD上的点F处,折痕为BE,则EF的长为( )
    A.B.C.D.
    【答案】A
    【思路分析】由翻折的性质,得BF=AB=4,AE=EF,设AE=EF=x,在Rt△DEF中,利用勾股定理构建方程并求解,即可解决问题.
    【解析】∵四边形ABCD是矩形,
    ∴AD=BC=2,CD=AB=4,∠D=∠C=90°,
    根据题意,得:BF=AB=4,AE=EF,

    设AE=EF=x,在Rt△DEF中,
    ∵DE2+DF2=EF2,



    故选:A.
    【点拨】本题考查了轴对称、矩形、勾股定理、一元一次方程的知识;解题的关键是熟练掌握轴对称、矩形、勾股定理的性质,从而完成求解.
    例题2:(2021·河南泌阳·九年级期中)如图,在△ABC中,∠C=90°,∠A=30°,AB=2.以点B为圆心,BC为半径画弧交AB于点D,再以点A为圆心,AD为半径画弧交AC于点E.则CE的长等于( )
    A.﹣1B.C.D.1
    【答案】A
    【思路分析】解直角三角形求出AC,AE,可得结论.
    【解析】解:,




    故选:A
    【点拨】本题考查直角三角形30°角的性质等知识,解题的关键是求出BC=BD=AD=AE=1,属于中考常考题型.
    考向02 勾股定理的逆定理
    例题3:如图,点是正方形内一点,点到点,和的距离分别为1,,,延长与相交于点,则的长为( )
    A.3B.4C.D.
    【答案】D
    【思路分析】将绕点顺时针旋转90°得到,作垂足为,根据勾股定理逆定理得到是直角三角形,求出,,利用∽得到,可得结论.
    【解析】解:作垂足为,将绕点顺时针旋转得到,连接.
    ∵四边形为正方形,
    ∴,,
    ∵绕点顺时针旋转后得到,
    ∴,,
    ∵,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴AM=AE+EM=1+2=3,
    在中,,
    在和中,,,
    ∴∽,
    ∴,
    ∴,
    ∴,
    ∴,
    故选择:D.
    【点拨】本题考查了解直角三角形和相似三角形的判定与性质,锐角三角函数,勾股定理与勾股定理逆定理,解题关键是通过旋转构建直角三角形,利用勾股定理与逆定理,相似三角形性质和锐角三角函数求解是解题关键.
    例题4:(2021·陕西灞桥·一模)如图,在矩形ABCD中,AB=10,P是CD边上一点,M、N、E分别是PA、PB、AB的中点,以下四种情况,哪一种四边形PMEN不可能为矩形( )
    A.AD=3B.AD=4C.AD=5D.AD=6
    【答案】D
    【思路分析】先证四边形PMEN是平行四边形,当∠APB=90°时,四边形PMEN是矩形,设DP=x,CP=10-x,再由勾股定理得出方程,分别计算即可.
    【解析】解:∵四边形ABCD是矩形,
    ∴AD=BC,AB=CD=10,∠C=∠D=90°,
    ∵M、N、E分别是PA、PB、AB的中点,
    ∴ME、NE是△ABP的中位线,
    ∴ME∥BP,NE∥AP,
    ∴四边形PMEN是平行四边形,
    当∠APB=90°时,四边形PMEN是矩形,
    设DP=x,CP=10﹣x,
    由勾股定理得:AP2=AD2+x2,BP2=BC2+(10﹣x)2,AP2+BP2=AB2,
    ∴AD2+x2+AD2+(10﹣x)2=102,
    AD2+x2﹣10x=0,
    ①当AD=3时,x2﹣10x+9=0,
    x=1或x=9,符合题意;
    ②当AD=4时,x2﹣10x+16=0,
    x=2或x=8,符合题意;
    ③当AD=5时,x2﹣10x+25=0,
    x=5,符合题意;
    ④当AD=6时,x2﹣10x+36=0,无解;
    故选:D.
    【点拨】本题考查了矩形的判定与性质、平行四边形的判定与性质以及勾股定理等知识;熟练掌握矩形的性质和勾股定理是解题的关键.
    考向03 勾股定理的应用
    例题5:(2021·山东省诸城市树一中学三模)如图,一只蚂蚁要从圆柱体下底面的点,沿圆柱侧面爬到与相对的上底面的点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为( )
    A.B.
    C.D.10
    【答案】B
    【思路分析】要求最短路线,首先要把圆柱的侧面展开,利用两点之间线段最短,再利用勾股定理来求.
    【解析】解:把圆柱侧面展开,展开图如图所示,点A,B的最短距离为线段AB的长,
    BC=6,AC为底面半圆弧长,AC=2π,
    所以AB=.
    故选:B.
    【点拨】此题主要考查了平面展开图的最短路径问题,本题的关键是要明确,要求两点间的最短线段,就要把这两点放到一个平面内,即把圆柱的侧面展开再计算.
    例题6:(2021·山东长清·一模)如图,一艘轮船在处测的灯塔在北偏西15°的方向上,该轮船又从处向正东方向行驶20海里到达处,测的灯塔在北偏西60°的方向上,则轮船在处时与灯塔之间的距离(即的长)为( )
    A.海里B.海里
    C.40海里D.海里
    【答案】D
    【思路分析】过作于,解直角三角形求出和,即可解决问题.
    【解析】解:过作于,如图所示:
    在中,,海里,
    ∴(海里),(海里),
    ∵,,
    ∴,
    ∴是等腰直角三角形,
    ∴海里,
    ∴海里,
    故选:D.
    【点拨】本题考查了解直角三角形-方向角问题,正确的作出辅助线是解题的关键.
    考向04 正弦、余弦和正切
    例题7:如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=,BC=2,则sin∠ACD的值为( )
    A.B.C.D.
    【答案】A
    【思路分析】在直角△ABC中,根据勾股定理即可求得AB,而∠B=∠ACD,即可把求sin∠ACD转化为求sinB.
    【解析】在直角△ABC中,根据勾股定理可得:AB=,
    ∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,
    ∴∠B=∠ACD,
    ∴.
    故选:A.
    【点拨】本题考查了锐角三角函数的定义,利用了勾股定理,余角的性质,正弦三角函数等于对边比斜边.
    例题8:如图所示,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为( )
    A.B.C.D.
    【答案】C
    【思路分析】连接CD,在中,由勾股定理求得OD的长;由同弧所对的圆周角相等得到∠OBC=∠ODC,求得∠ODC的余弦值即可.
    【解析】解:设⊙A交x轴于另一点D,连接CD,作图如下:

    ∴CD是直径
    ∴CD=10

    ∴OC=5
    在中,, OC=5, CD=10
    由勾股定理得:
    即:



    ∴∠OBC=∠ODC,
    ∴在中,
    故选:C
    【点拨】本题考查圆周角定理的推论,勾股定理解直角三角形,锐角三角函数等知识点,能够结合图形,利用数形结合思想是解此类题的关键.
    例题9:(2021·广东·深圳市新华中学九年级期末)如图,已知E是正方形中边延长线上一点,且,连接、,与交于点N,F是的中点,连接交于点M,连接.有如下结论:①;②;③;④,其中正确的是( )
    A.①②③B.①②④C.②③④D.①②③④
    【答案】D
    【思路分析】(1)证明△NCD∽△NBE,根据相似三角形的性质列出比例式,得到DN=EN,判断①;根据两边对应成比例、夹角相等的两个三角形相似判断②;FG⊥AE于G,根据等腰直角三角形的性质、正切的定义求出tan∠FAG,根据相似三角形的性质判断③;根据三角形的面积公式计算,判断④.
    【解析】解:∵四边形ABCD为正方形,AB=BE,
    ∴AB=CD=BE,AB∥CD,
    ∴△NCD∽△NBE,
    ∴1,
    ∴DN=EN,故①结论正确;
    ∵∠CBE=90°,BC=BE,F是CE的中点,
    ∴∠BCE=45°,BFCEBE,FB=FE,BF⊥EC,
    ∴∠DCE=90°+45°=135°,∠FBE=45°,
    ∴∠ABF=135°,
    ∴∠ABF=∠ECD,
    ∵,,
    ∴,
    ∴△ABF∽△ECD,故②结论正确;
    作FG⊥AE于G,则FG=BG=GE,
    ∴,
    ∴tan∠FAG,
    ∵△ABF∽△ECD,
    ∴∠CED=∠FAG,
    ∴tan∠CED,故③结论正确;
    ∵tan∠FAG,
    ∴,
    ∴,
    ∴S△FBMS△FCM,
    ∵F是CE的中点,
    ∴S△FBC=S△FBE,
    ∴S四边形BEFM=2S△CMF,故④结论正确;
    故选:D.
    【点拨】本题考查的是相似三角形的判定和性质、三角形的面积计算,掌握相似三角形的判定定理和性质定理、三角形的面积公式是解题的关键.
    考向05 特殊角的三角函数值
    例题10:(2021·江苏·苏州高新区第二中学二模)如图,边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,CF的值为( )
    A.B.C.D.
    【答案】D
    【思路分析】首先延长DC与A′D′交于点M,由四边形ABCD是菱形与折叠的性质,易求得CB=CM,△D′FM是含30°角的直角三角形,利用正切函数的知识,即可求得答案.
    【解析】解:延长FC、A′D′交于M,
    设CF=x,FD=2-x,
    ∵四边形ABCD为菱形,∠A=60°,
    ∴AB∥CD,∠DCB=∠A=60°,
    ∴∠A+∠D=180°,
    ∴∠D=120°,
    由折叠得:∠BD′F=∠D=120°,
    ∴∠FD′M=180°-120°=60°,
    ∵D′F⊥CD,
    ∴∠D′FC=90°,
    ∴∠M=90°-60°=30°,
    在Rt△FOC中,∠DCB=60°,
    ∵∠DCB=∠CBM+∠M,
    ∴∠CBM=60°-30°=30°,
    ∵∠BCD=∠CBM+∠M=60°,
    ∴∠CBM=∠M=30°,
    ∴CB=CM=2,
    由折叠得:D′F=DF=2-x,
    tanM=tan30°=,
    ∴x=4-2,
    ∴CF=4-2,
    故选:D.
    【点拨】本题考查了翻折变换和菱形的性质,及特殊角的三角函数值,作辅助线,构建直角三角形是解题的关键.
    例题11:(2021·贵州黔东南·中考真题)如图,在边长为2的正方形ABCD中,若将AB绕点A逆时针旋转,使点B落在点的位置,连接B,过点D作DE⊥,交的延长线于点E,则的长为( )
    A.B.C.D.
    【答案】A
    【思路分析】利用已知条件求得,设,将都表示出含有的代数式,利用的函数值求得,继而求得的值
    【解析】
    设交于点,
    由题意:
    是等边三角形
    四边形为正方形
    ∴∠CBF=90°-60°=30°,
    DE⊥



    解得:
    故选A
    【点拨】本题考查了正方形的性质,等边三角形的判定与性质,锐角三角函数定义,特殊角的锐角三角函数值,灵活运用锐角三角函数的定义及特殊三角函数值是解题的关键.
    考向06 锐角三角函数的性质
    例题12:已知,那么锐角的取值范围是( )
    A.B.C.D.
    【答案】D
    【思路分析】根据当α=45°时sinα=csα和正弦函数和余弦函数的增减性即可得出答案.
    【解析】解:∵α=45°时sinα=csα,当α是锐角时sinα随α的增大而增大,csα随α的增大而减小,
    ∴45°<α<90°.
    故选D.
    【点拨】考查了锐角三角函数的增减性,当角度在0°~90°间变化时,正弦值随着角度的增大而增大,余弦值随着角度的增大而减小.
    例题13:已知为锐角,下列结论:①;②如果,那么;③如果,那么;④,正确的有( )
    A.1个B.2个C.3个D.4个
    【答案】C
    【思路分析】根据锐角三角函数的定义、互余角的三角函数的关系、锐角三角函数的增减性、特殊角的三角函数值及绝对值的定义求解.
    【解析】①如果α=30°,那么sinα=,csα=,sinα+csα=≠1,错误;
    ②∵90°>α>45°,
    ∴0°<90°-α<45°<α,
    ∴sinα>sin(90°-α),
    ∴sinα>csα,正确;
    ③∵cs60°=,锐角余弦函数随角的增大而减小,
    ∴如果csα>,则α<60°,正确;
    ④∵sinα≤1,
    ∴sinα-1≤0,
    ∴=|sinα-1|=1-sinα,正确.
    故选C.
    【点拨】本题考查了锐角三角函数的定义、互余角的三角函数的关系、锐角三角函数的增减性、特殊角的三角函数值及绝对值的定义,综合性较强,涉及知识点较多,须认真仔细.
    考向07 解直角三角形及其应用
    例题14:(2021·河南镇平·九年级期中)如图给出了一种机器零件的示意图,其中米、米,则的长为( )
    A.米B.米C.米D.米
    【答案】C
    【思路分析】如图,作交的延长线于 作交的延长线于F, 证明四边形为矩形,可得 再求解 可得 再代入数据可得答案.
    【解析】解:如图,作交的延长线于 作交的延长线于F,

    四边形为矩形,

    在中,

    在中,



    当米、米,
    米,
    故选:C
    【点拨】本题考查的是矩形的判定与性质,解直角三角形的应用,熟练的构建需要的直角三角形是解题的关键.
    例题15:(2021·浙江平阳·九年级期中)我国伟大的数学家刘徽于公元263年攥《九章算术注》中指出,“周三径一”不是圆周率值,实际上是圆内接正六边形周长和直径的比值(图1).刘徽发现,圆内接正多边形边数无限增加时,多边形的周长就无限逼近圆周长,从而创立“割圆术”,为计算圆周率建立起相当严密的理论和完善的算法.如图2,六边形是圆内接正六边形,把每段弧二等分,作出一个圆内接正十二边形,连结,,交于点P,,则( )
    A.2B.C.D.
    【答案】D
    【思路分析】设正六边形的中心为O,连接OA,过点A作AH⊥FC于点H,则△OFA是等边三角形,∠PFA=60°,由正十二边形的中心角及圆周角定理,可得∠FAG=75°,则易得△AHP是等腰直角三角形,从而可求得AH=PH的长,以及FH、AF 的长,故可得PF、FC的长,最后求得PC的长,并求得结果.
    【解析】设正六边形的中心为O,连接OA,过点A作AH⊥FC于点H,如图
    ∵正六边形的中心角为:360°÷6=60°,OA=OF
    ∴△OFA是等边三角形
    ∴∠PFA=60°,OF=AF
    ∵AH⊥FC
    ∴∠FAH=90°-∠PFA=30°
    ∵正十二边形的中心角为:360°÷12=30°
    ∴弧FEG所对的圆心角为5×30°=150°
    ∴∠FAG==75°
    ∴∠HAP=∠HPA=45°


    ∴AF=2FH=4
    ∴,FC=2OF=8


    故选:D.
    【点拨】本题考查了正多边形与圆,圆周角定理,等边三角形的判定与性质,解非直角三角形等知识,关键是通过恰当的辅助线把一般三角形转化为特殊三角形来解决.
    微练习
    1.有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1,,.其中勾股数有( )
    A.1组B.2组C.3组D.4组
    【答案】A
    【解析】解:①32+42=52,三边是整数,同时能构成直角三角形,故为勾股数;
    ②(62)2+(82)2≠(102)2,不能构成直角三角形,故不为勾股数;
    ③0.5,1.2,1.3三边不是正整数,故不为勾股数;
    ④1,,,三边不是正整数,故不为勾股数;
    故其中勾股数有1组.
    故选:A.
    2.(2021·广东·深圳市龙岗区百合外国语学校九年级期中)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①CG=;②△AEG的周长为8;③△EGF的面积为.其中正确的是( )
    A.①②③B.①③C.①②D.②③
    【答案】D
    【解析】解:如图,在正方形ABCD中,AD∥BC,AB=BC=AD=4,∠B=∠BAD=90°,
    ∴∠HAD=90°,
    ∵HF∥AD,
    ∴∠H=90°,
    ∵∠HAF=90°﹣∠DAM=45°,
    ∴∠AFH=∠HAF.
    ∵AF,
    ∴AH=HF=1=BE.
    ∴AE=3,EH=AE+AH=AB﹣BE+AH=4=BC,
    ∴△EHF≌△CBE(SAS),
    ∴EF=EC,∠HEF=∠BCE,
    ∵∠BCE+∠BEC=90°,
    ∴HEF+∠BEC=90°,
    ∴∠FEC=90°,
    ∴△CEF是等腰直角三角形,
    在Rt△CBE中,BE=1,BC=4,
    ∴EC2=BE2+BC2=17,
    ∴S△ECFEF•ECEC2,
    过点F作FQ⊥BC于Q,交AD于P,
    ∴∠APF=90°=∠H=∠HAD,
    ∴四边形APFH是矩形,
    ∵AH=HF,
    ∴矩形AHFP是正方形,
    ∴AP=PF=AH=1,
    同理:四边形ABQP是矩形,
    ∴PQ=AB=4,BQ=AP=1,FQ=FP+PQ=5,CQ=BC﹣BQ=3,
    ∵AD∥BC,
    ∴△FPG∽△FQC,
    ∴,
    ∴,
    ∴PG,
    ∴AG=AP+PG,
    ∴DG=AD﹣AG=4,
    在Rt△EAG中,根据勾股定理得,EG,
    ∴△AEG的周长为AG+EG+AE3=8,故②正确;在Rt△CDG中,根据勾股定理得,CG,故①错误;
    ∵S△ECG=S正方形ABCD﹣S△AEG﹣S△EBC﹣S△GDC=AD2AG•AEGD•DCEB•BC=42341×4,
    ∴S△EGF=S△ECF﹣S△ECG,故③正确;
    故选:D.
    3.(2021·广东·深圳市龙岗区宏扬学校九年级期中)矩形ABCD中,AB=2,AD=1,点M在边CD上,若AM平分∠DMB,则DM的长是( )
    A.B.C.﹣D.2﹣
    【答案】D
    【解析】解:∵四边形ABCD是矩形,
    ∴CD=AB=2,AB∥CD,BC=AD=1,∠C=90°,
    ∴∠BAM=∠AMD,
    ∵AM平分∠DMB,
    ∴∠AMD=∠AMB,
    ∴∠BAM=∠AMB,
    ∴BM=AB=2,
    ∴CM=,
    ∴DM=CD-CM=2-.
    故选:D.
    4.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是( )
    A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2
    【答案】C
    【解析】解:在△ABC中,∠B=90°,
    ∴△ABC为直角三角形,
    则根据勾股定理得:.
    故选:C.
    5.如图,已知△ABC中,AB=AC,∠BAC=90°,∠EPF=90°,且其顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①△PFA≌△PEB;②∠PFE=45°;③EF=AP;④图中阴影部分的面积是△ABC的面积的一半.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的有( )
    A.1个B.2个C.3个D.4个
    【答案】C
    【解析】∵AB=AC,∠BAC=90°,点P是BC中点
    ∴∠APB=90°,AP=CP=BP,∠B=∠C=∠CAP=45°
    ∵∠EPF=∠APB=90°
    ∴∠FPA+∠APE=∠APE+∠EPB
    ∴∠FPA=∠EPB
    在△PFA和△PEB中

    ∴△PFA≌△PEB
    故①正确
    ∴PF=PE,△PFA的面积=△PEB的面积

    故②正确
    ∴阴影部分面积=
    故④正确
    当点E、F分别是AB、AC的中点时,PE⊥AB,则△PAE是等腰直角三角形,由勾股定理得

    ∴EF=AP
    当点E、F不是AB、AC的中点时,则PE与AB不垂直,从而

    ∴EF≠AP
    故③错误
    所以正确的结论有3个
    故选:C
    6.在△ABC中,∠C=90°,tanA=,则sinA=( )
    A.B.C.D.
    【答案】A
    【解析】解:∵ ,
    ∴在中,设BC=x,AC=3x,
    由勾股定理得:
    ∴AB==x,
    ∴sinA===,
    故选:A.
    7.(2021·四川·成都绵实外国语学校九年级期中)在Rt△ABC中,∠C=90°,AC=1,BC=2,则csB的值是( )
    A.B.C.2D.
    【答案】D
    【解析】解:如图,,∠C=90°,AC=1,BC=2,


    故选D
    8.(2021·广东·佛山市华英学校九年级期中)在中,,、、的对边分别是a、b、c.当已知和a时,求c,应选择的关系式是( )
    A.B.
    C.D.
    【答案】A
    【解析】解:∵在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c
    ∴sinA=,
    ∴c=,
    故选A.
    9.(2021·山东岱岳·九年级期中)如图,在C处测得旗杆AB的顶端A的仰角为30°,向旗杆前进10米到达D处,在D处测得A的仰角为60°,则旗杆的高为( )米.
    A.5+3B.10C.5D.5+5
    【答案】C
    【解析】解:由题意得:∠C=30°,∠ADB=60°,
    ∴∠DAC=∠ADB﹣∠C=30°,
    ∴∠DAC=∠C,
    ∴AD=DC=10米,
    在Rt△ADB中,sin∠ADB=,
    则AB=AD•sin∠ADB=10×=5(米),
    故选:C.
    10.(2021·山东任城·九年级期中)如图,为方便行人过某天桥,市政府在10米高的天桥两端修建斜道,设计斜坡满足sinA=,则斜道AC的长度是( )
    A.25B.30C.35D.40
    【答案】B
    【解析】在Rt△ABC中,∠ABC=90°,BC=10米,sinA=,
    则=,即=,
    解得:AC=30(米),
    故选:B.
    二、填空题
    11如图,已知是的边上的高,若,,,则的长为_____.
    【答案】
    【解析】解:∵CD是△ABC的边AB上的高,
    ∴△ADC,△BDC是直角三角形,
    在Rt△ADC中,由勾股定理得:AC==2,
    ∵AB=2AC,
    ∴AB=4,
    BD=AB+AD=4+1=5,
    在Rt△BDC中,由勾股定理得:BC==.
    故答案为:.
    12.若三角形的三边边长分别为6,8,12,则的面积是______.
    【答案】
    【解析】解:如图,AB=6,AC=8,BC=12,
    过A作AD⊥BC,垂足为D,
    设BD=x,则CD=12-x,
    则有,
    ∴,
    解得:x=,即BC=,
    ∴AD==,
    ∴△ABC的面积为=,
    故答案为:.
    13.(2021·浙江·杭州市天杭实验学校九年级期中)⊙O内一点P,OP=3cm,过点P的最短的弦AB=6cm,Q是⊙O上除AB两点之外的任一点,则∠AQB=____.
    【答案】或
    【解析】解:如下图当AB⊥OP,AB为过点P的最短的弦且AB=6cm,
    连接OA,OB,
    ∵AB⊥OP,
    ∴,∠AOB=2∠AOP,
    ∴,
    ∴,
    当Q点在处时,,
    当Q点在处时,,
    故答案为:或.
    14.(2021·广东·佛山市华英学校九年级期中)在直角坐标系中,等边如图放置,点A的坐标为,每一次将绕着点O逆时针方向旋转,同时每边扩大为原来的2倍,第一次旋转后得到,第二次旋转后得到,…,以此类推,则点的坐标为________.
    【答案】(,)
    【解析】解:(1)∵A点坐标为(1,0),
    ∴OA=1,
    ∴第一次旋转后,点在第一象限,;
    第二次旋转后,点在第二象限,;
    第三次旋转后,点在x轴负半轴,;
    第四次旋转后,点在第三象限,;
    第五次旋转后,点在第四象限,;
    第六次旋转后,点在x轴正半轴,;
    如此循环,每旋转6次,A的对应点又回到x轴正半轴上,
    ∵2021÷6=336余5,
    ∴点在第四象限,且,,
    过点作轴于H,
    ∴,
    ∴,
    ∴,
    ∴点的坐标为(,),
    故答案为:(,).
    三、解答题
    15.如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.
    (1)求证:△BCG≌△DCE;
    (2)如图2,连接BD,若BE=4,DG=2,求tan∠DBG的值.
    【答案】(1)见解析;(2)
    【解析】(1)证明:∵四边形ABCD是正方形,
    ∴∠BCG=∠DCE=90°,BC=CD,
    ∵BF⊥DE,
    ∴∠DFG=∠BCG=90°,
    ∵∠BGC=∠DGF,
    ∴∠CBG=∠CDE.
    在△BCG和△DCE中, ,
    ∴△BCG≌△DCE,
    (2)解:过点G作GH⊥BD垂足为H,
    ∵△BCG≌△DCE,
    ∴CG=CE,
    ∵BE=BC+CE=,DG=CD﹣CG=,
    ∴BC=CD=,CG=CE=,
    在RT△BDC中,
    ∵∠BCD=90°,
    ∴BD==,
    ∵∠DHG=45°,∠DHG=90°,DG=,
    ∴=,
    ∴DH=2,
    ∴GH=DH=2,
    ∵BH=BD﹣DH,
    ∴BH=6﹣2=4,
    在RT△BHG中,
    ∵∠BHG=90°,
    ∴tan∠DBG=,
    ∴tan∠DBG=
    16.如图,图1,图2,均为正方形网格,每个小正方形的面积均为1.在这个正方形网格中,各个小正方形的顶点叫做格点.请在下面的网格中按要求画图,使得每个图形的顶点均在格点上.
    (1)画一个直角三角形,且三边之比为1:2:;
    (2)画一个边长为整数的菱形,且面积等于24
    【答案】(1)见解析;(2)见解析
    【解析】解:(1)如图1中,△ABC即为所求.
    (2)如图2中,菱形ABCD即为所求.
    17.(2021·福建同安·九年级期中)如图,在等边中,点为内的一点,,,将绕点逆时针旋转60°得,连接.
    (1)求证:;
    (2)若,求,的长.
    【答案】(1)见解析;(2)
    【解析】(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE,
    ∴△ABD≌△ACE,∠BAC=∠DAE,
    ∴AD=AE,BD=CE,∠AEC=∠ADB=120°,
    ∵△ABC为等边三角形,
    ∴∠BAC=60°,
    ∴∠DAE=60°,
    ∴△ADE为等边三角形,
    ∴AD=DE;
    (2)∵△ABD≌△ACE,
    ∴∠ADB=∠AEC=120°,
    ∵∠ADC=90°,∠DAE=60°,
    ∴∠DCE=360°-∠ADC-∠AEC-∠DAE=90°;
    ∵△ADE为等边三角形,
    ∴∠ADE=60°,
    ∴∠CDE=∠ADC-∠ADE=30°,
    又∵∠DCE=90°,
    ∴DE=2CE=2BD=2,
    ∴AD=DE=2,
    在Rt△DCE中,.
    18.(2021·河北·广平县第二中学九年级期中)如图,小东在教学楼距地面8米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.5米处,若国旗随国歌声冉冉升起,并在国歌播放46秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75)
    【答案】国旗匀速上升的速度约为米/秒.
    【解析】解:由题意得:米,
    是等腰直角三角形,
    米,
    在中,(米),
    米,
    国旗匀速上升的速度约为(米/秒),
    答:国旗匀速上升的速度约为米/秒.
    19.(2021·上海市金山初级中学九年级期中)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点D为边AB的中点,DE⊥AB交边BC于点E,点P为边AC上一动点(P与A、C不重合),点Q为边BC上一动点,且∠PDQ=90°.
    (1)求证:△ADP∽△EDQ;
    (2)在点P运动过程中,请写出线段BQ的取值范围;
    (3)连结PQ,求∠DPQ的正切值.
    【答案】(1)见解析;(2) ;(3)
    【解析】解:(1)∵DE⊥AB,
    ∴∠ADE=∠BDE=∠PDQ=∠C=90°,
    ∴∠A+∠B=90°,∠B+∠DEQ=90°,∠ADP+∠PDE=90°,∠PDE+∠EDQ=90°,
    ∴∠A=∠DEQ,∠ADP=∠EDQ,
    ∴△ADP∽△EDQ;
    (2)∵在△ABC中,∠ACB=90°,AC=6,BC=8,
    ∴,
    ∵D是AB的中点,
    ∴,
    ∵∠EDB=∠ACB=90°,∠B=∠B,
    ∴△EDB∽△ACB,
    ∴即,
    ∴,,
    如图所示,当P与C点重合时,BQ有最小值,
    ∵D为直角三角形ABC斜边AB的中点,
    ∴,
    ∴∠DCQ=∠B,
    ∵∠ACB=∠CDQ=90°,
    ∴△CDQ∽△BCA,
    ∴即,
    ∴,
    ∴;
    如图所示,当P点和A点重合时,BQ有最大值,最大值即为BE,
    ∵P与A、C不重合,
    ∴ ;
    (3)由(1)得△ADP∽△EDQ,由(2)得,AD=5,
    ∴,
    ∵∠PDQ=90°,
    ∴.
    20.(2021·广东·佛山市华英学校九年级期中)如图,矩形中,,M是边上一点,将沿直线翻折,得到.
    (1)如图1,当平分时,求的长.
    (2)如图2,当M是的中点时,连接,则的值;
    (3)连接,当时,求的面积.
    【答案】(1)DM==;(2)=,(3)S△ABN=.
    【解析】解:(1)∵沿直线翻折得到.
    ∴∠DAC=∠NAM,
    ∵NA平分∠MAB,
    ∴∠NAM=∠NAB,
    ∴∠DAC=∠NAM=∠NAB,
    ∵四边形ABCD为矩形,
    ∴∠DAB=90°,
    ∴3∠DAM=∠DAC+∠NAM+∠NAB=∠DAB=90°,
    ∴∠DAM=30°,
    ∴DM=ADtan30°=;
    (2)过ME⊥NC于E,
    ∵将沿直线翻折得到.
    ∴DM=NM,∠DMA=∠NMA,
    ∵M为DC中点,
    ∴DM=CM=MN,
    在Rt△ADM中,,
    ∵MN=MC,ME⊥NC,
    ∴∠NME=∠CME,
    ∴∠DMA+∠NMA+∠NME+∠CME=180°,
    ∴∠DMA+∠CME=90°,
    ∵∠EMC+∠MCE=90°,
    ∴∠MCE=∠DMA,
    ∴=cs∠DMA=,
    (3)过N作GF⊥DC,交CD于G,交AB于F,连结DN交AM于H,
    ∵将沿直线翻折得到.
    ∴点D与点N关于AM对称,
    ∴DN⊥AM,
    ∴∠NDG+∠DMH=90°,
    ∵∠DAM+∠DMA=90°,
    ∴∠NDG=∠MAD,
    在Rt△ADM中,,
    ∴S△ADM=
    ∴,
    ∴,
    ∴DN=2DH=,
    ∴Sin∠GDN=sin∠DAM=,
    ∴,
    ∴FN=GF-GN=3-,
    ∴S△ABN=.
    相关试卷

    第11讲 勾股定理与锐角三角函数(压轴题组)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组): 这是一份第11讲 勾股定理与锐角三角函数(压轴题组)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组),文件包含第11讲勾股定理与锐角三角函数压轴题组原卷版-2022年中考数学大复习知识点·易错点·题型训练·压轴题组doc、第11讲勾股定理与锐角三角函数压轴题组解析版-2022年中考数学大复习知识点·易错点·题型训练·压轴题组doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    第02讲 整式(题型训练)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组): 这是一份第02讲 整式(题型训练)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组),文件包含第02讲整式题型训练原卷版-学霸计划2022年中考数学大复习知识点·易错点·题型训练·压轴题组doc、第02讲整式题型训练解析版-学霸计划2022年中考数学大复习知识点·易错点·题型训练·压轴题组doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    初中数学中考复习 第05讲 实数与二次根式(易错点梳理+微练习)(原卷版)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组): 这是一份初中数学中考复习 第05讲 实数与二次根式(易错点梳理+微练习)(原卷版)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组),共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第11讲 勾股定理与锐角三角函数(易错点梳理+微练习)-【学霸计划】2022年中考数学大复习(知识点·易错点·题型训练·压轴题组)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map