还剩16页未读,
继续阅读
河南省三门峡市2023-2024学年高二上学期1月期末调研考试物理试题
展开
这是一份河南省三门峡市2023-2024学年高二上学期1月期末调研考试物理试题,共19页。试卷主要包含了单选题,多选题,实验题,解答题等内容,欢迎下载使用。
一、单选题
1.许多科学家对物理学的发展做出了巨大贡献,下列说法正确的是( )
A.卡文迪什利用扭秤实验测出了静电力常量k的数值
B.富兰克林通过油滴实验测定了电荷量e的数值
C.法拉第提出了场的概念并用电场线形象地描述电场
D.麦克斯韦提出了电磁场统一理论并用实验证明了电磁波的存在
2.有研究表明,当兴奋情绪传播时,在人的体表可以测出与之对应的电势变化。某一瞬间人体表面的电势分布图如图所示,图中实线为等差等势面,标在等势面上的数值分别表示该等势面的电势,、、、为等势面上的点,该电场可等效为两等量异种电荷产生的电场,、为两电荷连线上对称的两点,、为两电荷连线中垂线上对称的两点。下列说法中正确的是( )
A.点的电势大于点的电势
B.、两点的电场强度大小相等,方向相反
C.负电荷在点的电势能小于在点的电势能
D.将带正电的试探电荷从点移到点,电场力做负功
3.如图是学生常用的饭卡内部实物图,其由线圈和芯片组成电路。当饭卡处于感应区域时,刷卡机会激发变化的磁场,从而在饭卡内线圈中产生感应电流来驱动芯片工作。已知线圈面积为S,共n匝。某次刷卡时,线圈平面与磁场垂直,且全部处于磁场区域内,在感应时间t内,磁感应强度方向向里且由0增大到,此过程中( )
A.通过线圈的磁通量变化量大小为B.线圈中感应电流方向为逆时针方向
C.AB边受到的安培力方向向右D.线圈有扩张的趋势
4.如图所示,L是自感系数很大、电阻可忽略不计的自感线圈,A、B是两个完全相同的灯泡,它们的额定电压和电源电动势相等,电源内阻可忽略。下列说法正确的是( )
A.闭合开关S时,A、B灯同时亮且都正常发光
B.闭合开关S,待电路稳定时,A灯比B灯亮
C.闭合开关S,待电路稳定时,B灯比A灯亮
D.断开开关S时,A、B两灯同时缓慢熄灭
5.如图所示,一台理想变压器原、副线圈匝数之比。原线圈接在电压的交流电源上,副线圈接R=20Ω的电阻。图中电表均为理想电表,下列说法正确的是( )
A.电压表的示数为40VB.电流表的示数为19A
C.变压器的输入功率为60WD.变压器的输出功率为100W
6.如图(a),水平匀强磁场中有一边长为0.5m的正方形线框,其电阻为1Ω。当线框绕过其两对边中心的竖直轴OO'以某一角速度匀速旋转时,线框中产生的感应电动势ɛ随时间t变化的关系如图(b)所示。下列说法正确的是( )
A.线框转动的角速度为0.4rad/s
B.磁感应强度的大小约为0.4T
C.线框内感应电流的有效值约为0.7A
D.t=0时,线框平面与磁感应强度方向的夹角为90°
7.如图所示,电阻不计的水平导轨间距0.5m;导体棒ab垂直于导轨放置且与导轨接触良好,其质量m=1kg,接入电路的电阻R=0.9Ω,与导轨间的动摩擦因数=0.5,导轨平面处在磁感应强度为5T的匀强磁场中,磁场方向垂直于ab斜向右上方,与导轨平面夹角α=53°;电源电动势E=10V,内阻r=0.1Ω,定值电阻R0=4Ω。细绳垂直于ab且沿水平方向跨过轻质定滑轮悬挂一重物。不计定滑轮的摩擦,设最大静摩擦力等于滑动摩擦力,重力加速度g取10m/s2,sin53°=0.8,cs53°=0.6。ab处于静止状态,则( )
A.导体棒ab受到的摩擦力方向一定向右
B.导体棒ab受到的安培力大小为5N,方向水平向左
C.重物重力G最小值是1.5N
D.重物重力G最大值是7.5N
8.一列简谐横波在时的波形图如图所示。介质中处的质点P沿y轴方向做简谐运动的表达式为(y的单位是cm)。下列说法中正确的是( )
A.这列波的波长为3mB.这列波的波速为1m/s
C.这列波的传播方向沿x轴负方向D.在时间内,P质点通过的路程是
二、多选题
9.如图甲,为某地新装的一批节能路灯,该路灯通过光控开关实现自动控制,电灯的亮度可自动随周围环境的亮度改变而改变。如图乙,为其内部电路简化原理图,电源电动势为E,内阻为r,为光敏电阻(光照强度增加时,其电阻值减小)。现减少光照强度,灯泡电阻不变,则下列判断正确的是( )
A.A、B灯都变暗B.A、B灯都变亮
C.电源的总功率变大D.电源的效率变大
10.利用如图所示的电路分析平行板电容器的动态变化,已知电源的内阻可忽略不计,R为电阻箱,一带负电的小球固定在电容器之间的O位置。则下列说法正确的是( )
A.保持电键闭合,M板向下平移少许,小球的电势能增大
B.保持电键闭合,将电阻箱的阻值增大,静电计的指针偏角减小
C.断开电键,M板向下平移少许,静电计的指针偏角减小
D.断开电键,M板向左平移少许,小球的电势能减少
11.如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中,一质量为m(质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,不计杆与导轨之间的摩擦。现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离L时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r,导轨电阻不计。则此过程中( )
A.杆的速度最大值为
B.流过电阻R的电量为
C.恒力F做的功大于回路中产生的焦耳热
D.恒力F做的功与安培力做的功之和等于杆动能的变化量
12.如图所示,空间中存在一个半径为R的圆形匀强磁场,方向垂直纸面向里,从圆形磁场边界上的P点沿不同方向射入两个不同电荷量、初速度大小相同的带电粒子A、B,A粒子与圆形磁场半径的夹角为α=30°,B粒子与圆形磁场半径的夹角为θ=60°,结果两粒子都会从边界上的C点射出。不计粒子的重力,则下列说法正确的是( )
A.A、B粒子带同种性质电荷
B.A、B粒子的比荷之比为
C.A、B粒子在磁场中做圆周运动的半径之比为
D.A、B粒子在磁场中运动的时间之比为
三、实验题
13.在用单摆测量重力加速度的实验中:
(1)为了尽量准确地测得重力加速度,组装单摆时应选用的器材是 。
A.长度约25cm的轻质细绳 B.长度约110cm的轻质细绳
C.直径约1cm的小钢球 D.直径约3cm的塑料球
(2)某同学用游标卡尺测量小球直径d,游标卡尺如图甲所示,由此可得小球直径 mm。
(3)该同学改变摆长进行了多次测量,得到了多组摆长L及对应的单摆周期T的数据,作出了图像如图乙所示,图中相关坐标的数据均为已知,可得当地的重力加速度为 。
14.某同学设计了图甲所示的实验电路,电路中各个器材元件的参数为:电池组(E约为6V,r约为3Ω)、电流表(量程2.0A,内阻RA=0.8Ω)、电阻箱R1(0~99.9Ω)、滑动变阻器R2、开关三个及导线若干。他认为该电路可以用来测电源的电动势、内阻和R2接入电路的阻值。
(1)先利用该电路测R2接入电路的阻值。他的主要操作步骤是:先将滑动变阻器滑片调到某位置,接着闭合S2、S,断开S1,读出电流表的示数I;再闭合S、S1,断开S2,调节电阻箱的电阻值为3.6Ω时,电流表的示数也为I。则此时滑动变阻器接入电路的阻值为 Ω。
(2)接着利用该电路测电源电动势和内电阻
①他的实验步骤为:
A.在闭合开关前,调节R1或R2至 (选填“最大值”或“最小值”),之后闭合开关S,再闭合 (选填“S1”或“S2”);
B.调节电阻R1或R2,得到一系列电阻值R和电流I的数据;
C.断开开关,整理实验仪器。
②图乙是他根据实验数据绘出的-R图像,电源电动势E= V,内阻r= Ω。(结果保留两位有效数字)。
四、解答题
15.如图所示,在倾角θ=30°的斜面上固定一间距L=0.5m的两平行光滑金属导轨,在导轨上端接入电源和滑动变阻器R,电源电动势E=12V,内阻r=1Ω,一质量m=20g的金属棒ab与两导轨垂直并接触良好并处于静止状态。整个装置处壬磁感应强度B=0.10T,垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计),取g=10m/s2。
求:(1)金属棒ab中电流Ⅰ的大小;
(2)滑动变阻器R接入电路中的阻值R。
16.如图所示,在xOy坐标系中,y>0的范围内存在着沿y轴正方向的匀强电场,在y<0的范围内存在着垂直纸面的匀强磁场(方向未画出)。现有一质量为m、电荷量大小为-q(重力不计)的带电粒子,以初速度v0(v0沿x轴正方向)从y轴上的a点出发,运动一段时间后,恰好从x轴上的d点第一次进入磁场,然后从O点第—次离开磁场。已知Oa=L,Od=2L,求:
(1)电场强度大小;
(2)粒子第一次通过x轴时的速度大小和方向;
(3)磁感应强度的大小和方向。
17.如图,平行光滑金属导轨由水平部分和倾斜部分平滑连接而成,导轨间距L=0.2m.水平导轨的一部分处于磁感应强度B=0.5T、方向垂直于水平导轨平面向上的匀强磁场中,与水平导轨垂直的虚线MN和PQ为磁场区域的左、右边界.在磁场中离左边界d=0.4m处垂直于水平导轨静置导体棒a,在倾斜导轨上高h≡0.2m处垂直于导轨放置导体棒b.现将导体棒b由静止释放,最终导体棒a以lm/s的速度从磁场右边界离开磁场区域.已知导体棒a、b的质量均为m=0.01kg,阻值均为R=0.1Ω,棒的长度均等于导轨间距,不计导轨电阻,运动过程中导体棒始终垂直于导轨且接触良好,重力加速度g=10m/s2.求:
(1)导体棒b刚进入磁场时,导体棒a的加速度大小;
(2)a棒离开磁场时,b棒的速度大小;
(3)整个过程中,回路中产生的焦耳热Q.
参考答案:
1.C
【详解】A.卡文迪什利用扭秤实验测出了万有引力常量,故A错误;
B.密立根通过油滴实验测定了电荷量e的数值,故B错误;
C.法拉第提出了场的概念,并提出了用电场线形象地描述电场,故C正确;
D.麦克斯韦提出了电磁场统一理论,而赫兹用实验证实了电磁波的存在,故D错误。
故选C。
2.D
【详解】A.c、d两点位于同一条等势线上,则c点的电势等于d点的电势,故A错误;
B.该电势分布图可等效为等量异种电荷产生的,a、b为两电荷连线上对称的两点,根据等量异种电荷的电场的特点,可以判断、这两个对称点的电场强度大小相等、方向相同,故B错误;
C.负电荷在电势低的地方电势能大,所以负电荷在电势低的c点的电势能大于在电势高的a点的电势能,故C错误;
D.正电荷在电势高的地方电势能大,所以将带正电的试探电荷从电势低b点移到电势高d点,电场力做负功,电势能增加,故D正确。
故选D。
3.B
【详解】A.通过线圈的磁通量变化量大小为
故A错误;
BC.线圈内磁通量向里增加,根据楞次定律可知线圈中感应电流方向为逆时针,根据左手定则可知,AB边受安培力方向向左,故B正确,C错误;
D.线圈内磁通量增加,根据楞次定律可知线圈有收缩的趋势,故D错误。
故选B。
4.D
【详解】ABC.开关S闭合的瞬间,电源的电压同时加到两支路的两端,B灯立即发光,由于线圈的自感电动势阻碍电流的增加, A灯逐渐变亮,由于线圈的电阻可以忽略,待电路稳定时,A灯会和B灯一样亮,故ABC错误;
D.断开开关S的瞬间,线圈与两灯一起构成一个新的自感回路,通过线圈的电流将逐渐减小,由于自感作用, A、B两灯同时缓慢熄灭,故D正确。
故选D。
5.A
【详解】A.原线圈两端电压U1=380V, 由
可知电压表示数为U示=U2=40V,所以A正确;
B.根据欧姆定律,通过副线圈的电流
通过原线圈的电流I1根据
得
所以电流表示数为,所以B错误;
CD.电阻R的功率为
所以电压器的输入功率、输出功率均等于P=80W,所以CD错误。
故选A。
6.C
【详解】分析图(b),确定感应电动势的周期,进一步确定角速度。根据正弦式交变电流的产生规律,确定感应电动势的最大值,求解磁感应强度大小。根据最大值求解有效值,根据闭合电路欧姆定律求解感应电流有效值。线框平面与磁场方向平行时,感应电动势最大。
【解答】A.分析图(b)可知,线框产生的感应电动势周期为0.4s,角速度
故A错误;
B.根据交变电流的产生规律可知,感应电动势最大值
解得磁感应强度
故B错误;
C.根据正弦式交变电流最大值和有效值的关系可知,有效值
根据闭合电路欧姆定律可知,感应电流的有效值
故C正确;
D.t=0时,感应电动势最大,则线框平面与磁场方向平行,即线框平面与磁感应强度方向的夹角为0,故D错误。
故选C。
【点评】此题考查了正弦式交变电流的产生规律,明确感应电动势最大值的表达式、最大值和有效值的关系,即可求解。
7.D
【详解】AB.回路的电流
安培力
方向沿左上方与水平方向夹角为37°;
对导体棒若则棒受摩擦力向右;若,则棒受摩擦力向左,选项AB错误;
CD.当最大静摩擦力向右时,G最小,则
解得
当最大静摩擦力向左时,G最大,则
解得
选项C错误,D正确。
故选D。
8.D
【详解】A.由图可知这列波的波长
故A 错误;
B.由振动方程得
则波速
故B错误;
C.根据振动方程知P点在0时刻后向上振动,在波形图中由同侧法得波向x轴正向传播,故C错误;
D.时间
在时间内,P质点通过的路程是
故D正确。
故选D。
9.BD
【详解】AB.减少光照强度,光敏电阻阻值增大,根据“串反并同”,A、B灯都变亮。A错误,B正确;
C.同理,干路电流减小根据
电源总功率变小,C错误;
D.根据
光敏电阻阻值增大,路端电压增大,电源效率增大,D正确。
故选BD。
10.CD
【详解】A.保持电键闭合,则电容器两极板间的电压保持不变,M板向下平移少许由
可知电容器两极板之间的电场强度增大,由于N板接地,则N板的电势为零,点O与N板之间的电势差为
可知O点的电势升高,则带负电的小球在O点的电势能减少,故A错误;
B.由电路可知,静电计两端的电压等于电容器两极板之间的电压,保持电键闭合,调节电阻箱的阻值,电容器两极板之间的电压不变,则静电计的指针保持不变,故B错误;
C.断开电键,电容器所带的电荷量保持不变,M板向下移动,由
可知电容器的电容变大,又因为
可知电容器两极板间的电压减小,则静电计的指针偏角减小,故C正确;
D.断开电键,电容器所带的电荷量保持不变,M板向左移动,则电容器的电容减小,则两极板间的电压增大,由于两极板之间的距离保持不变,电场强度增大,O点的电势升高,带电小球的电势能减少,故D正确。
故选CD。
11.BCD
【详解】A.当杆的速度最大时,杆受力平衡,有
由闭合电路欧姆定律有
以及感应电动势公式,联立解得
故A错误;
B.流过电阻R的电量为
故B正确;
C.根据能量守恒可知,恒力做的功转化为回路中产生的焦耳热和杆的动能,所以恒力F做的功大于回路中产生的焦耳热,故C正确;
D.根据动能定理可知,恒力F做的功与安培力做的功之和等于杆动能的变化量,故D正确。
故选BCD。
12.BD
【详解】A.粒子在磁场中运动的轨迹如图所示
根据左手定则可知,A粒子带负电,B粒子带正电,故A错误;
B.根据几何关系
根据洛伦兹力提供向心力有
所以
所以A、B粒子的比荷之比为,故B正确;
C.A、B粒子在磁场中做圆周运动的半径之比为,故C错误;
D.粒子在磁场中运动的时间为
A粒子圆心角为60°,B粒子的圆心角为120°,所以A、B粒子在磁场中运动的时间之比为,故D正确。
故选BD。
13. BC 8.6
【详解】(1)[1]为了便于实验数据测量,减小空气阻力影响,实验中摆线应适当长一些,小球密度应适当大一些。
故选BC。
(2)[2]根据游标卡尺的读数规律,该读数为
(3)[3]由单摆周期公式有
可得
结合图像可得
解得
14. 3.6 最大值 S1 6.0 2.8
【详解】(1)[1]用等值替代法可测出R2接入电路的阻值,电阻箱的示数等于接入电路的阻值为3.6Ω;
(2)①[2][3]要用电阻箱与电流表结合测量电动势与内阻,则要改变电阻箱的值,在闭合开关前,调节电阻R1或R2至最大值,之后闭合开关S,再闭合S1;
②[4][5]由闭合电路欧姆定律可得
变形得
由上式可知图线的斜率是电动势的倒数,图像的斜率为
解得
E=6.0V
图线在纵轴上的截距是
解得
r=2.8Ω
15.(1)2A;(2)5Ω
【详解】(1)对金属棒受力分析,根据几何关系有
根据安培力公式有
解得
I=2A
(2)根据闭合电路欧姆定律有
解得
R=5Ω
16.(1);(2),速度方向与x轴正方向夹角为45°;(3),方向垂直纸面向里
【详解】(1)粒子在匀强电场中做类平抛运动,根据牛顿第二定律可得其加速度大小为
①
设粒子做类平抛运动的时间为t,则x方向上有
2L=v0t ②
y方向上有
③
联立①②③解得
④
(2)粒子在d点的y方向分速度大小为
⑤
联立①②⑤解得
⑥
设粒子在d点速度方向与x轴正方向的夹角为α,则
⑦
解得
⑧
粒子第一次通过x轴时的速度大小为
⑨
(3)由题意可知粒子进入磁场后向左偏转,根据左手定则可知磁感应强度方向垂直纸面向里。如图所示,根据几何关系可知粒子在磁场中做匀速圆周运动的半径为
⑩
根据牛顿第二定律有
⑪
联立⑨⑩⑪解得
⑫
17.(1)导体棒b刚进入磁场时,导体棒a的加速度大小为10m/s2;(2)a棒离开磁场时,b棒的速度大小为1m/s;(3)整个过程中,回路中产生的焦耳热Q为0.015J
【详解】解:(1)金属棒下滑过程机械能守恒,由机械能守恒定律得:
进入磁场时产生的感应电动势:
感应电流:,
对金属棒,由牛顿第二定律得:
代入数据解得:
(2)、两棒组成的系统动量守恒,以向右为正方向,由动量守恒定律得:
代入数据解得:
(3)棒离开磁场前、两棒共速,此时两棒间的距离为
对导体棒,由动量定理得:
其中:,则:
通过回路的电荷量:
代入数据解得:
从棒离开磁场到棒到达磁场右边界过程,通过回路的电荷量为,棒到达右边界时的速度为
对,由动量定理得:
其中:,则:
通过回路的电荷量:
整个过程,由能量守恒定律得:
代入数据解得:
一、单选题
1.许多科学家对物理学的发展做出了巨大贡献,下列说法正确的是( )
A.卡文迪什利用扭秤实验测出了静电力常量k的数值
B.富兰克林通过油滴实验测定了电荷量e的数值
C.法拉第提出了场的概念并用电场线形象地描述电场
D.麦克斯韦提出了电磁场统一理论并用实验证明了电磁波的存在
2.有研究表明,当兴奋情绪传播时,在人的体表可以测出与之对应的电势变化。某一瞬间人体表面的电势分布图如图所示,图中实线为等差等势面,标在等势面上的数值分别表示该等势面的电势,、、、为等势面上的点,该电场可等效为两等量异种电荷产生的电场,、为两电荷连线上对称的两点,、为两电荷连线中垂线上对称的两点。下列说法中正确的是( )
A.点的电势大于点的电势
B.、两点的电场强度大小相等,方向相反
C.负电荷在点的电势能小于在点的电势能
D.将带正电的试探电荷从点移到点,电场力做负功
3.如图是学生常用的饭卡内部实物图,其由线圈和芯片组成电路。当饭卡处于感应区域时,刷卡机会激发变化的磁场,从而在饭卡内线圈中产生感应电流来驱动芯片工作。已知线圈面积为S,共n匝。某次刷卡时,线圈平面与磁场垂直,且全部处于磁场区域内,在感应时间t内,磁感应强度方向向里且由0增大到,此过程中( )
A.通过线圈的磁通量变化量大小为B.线圈中感应电流方向为逆时针方向
C.AB边受到的安培力方向向右D.线圈有扩张的趋势
4.如图所示,L是自感系数很大、电阻可忽略不计的自感线圈,A、B是两个完全相同的灯泡,它们的额定电压和电源电动势相等,电源内阻可忽略。下列说法正确的是( )
A.闭合开关S时,A、B灯同时亮且都正常发光
B.闭合开关S,待电路稳定时,A灯比B灯亮
C.闭合开关S,待电路稳定时,B灯比A灯亮
D.断开开关S时,A、B两灯同时缓慢熄灭
5.如图所示,一台理想变压器原、副线圈匝数之比。原线圈接在电压的交流电源上,副线圈接R=20Ω的电阻。图中电表均为理想电表,下列说法正确的是( )
A.电压表的示数为40VB.电流表的示数为19A
C.变压器的输入功率为60WD.变压器的输出功率为100W
6.如图(a),水平匀强磁场中有一边长为0.5m的正方形线框,其电阻为1Ω。当线框绕过其两对边中心的竖直轴OO'以某一角速度匀速旋转时,线框中产生的感应电动势ɛ随时间t变化的关系如图(b)所示。下列说法正确的是( )
A.线框转动的角速度为0.4rad/s
B.磁感应强度的大小约为0.4T
C.线框内感应电流的有效值约为0.7A
D.t=0时,线框平面与磁感应强度方向的夹角为90°
7.如图所示,电阻不计的水平导轨间距0.5m;导体棒ab垂直于导轨放置且与导轨接触良好,其质量m=1kg,接入电路的电阻R=0.9Ω,与导轨间的动摩擦因数=0.5,导轨平面处在磁感应强度为5T的匀强磁场中,磁场方向垂直于ab斜向右上方,与导轨平面夹角α=53°;电源电动势E=10V,内阻r=0.1Ω,定值电阻R0=4Ω。细绳垂直于ab且沿水平方向跨过轻质定滑轮悬挂一重物。不计定滑轮的摩擦,设最大静摩擦力等于滑动摩擦力,重力加速度g取10m/s2,sin53°=0.8,cs53°=0.6。ab处于静止状态,则( )
A.导体棒ab受到的摩擦力方向一定向右
B.导体棒ab受到的安培力大小为5N,方向水平向左
C.重物重力G最小值是1.5N
D.重物重力G最大值是7.5N
8.一列简谐横波在时的波形图如图所示。介质中处的质点P沿y轴方向做简谐运动的表达式为(y的单位是cm)。下列说法中正确的是( )
A.这列波的波长为3mB.这列波的波速为1m/s
C.这列波的传播方向沿x轴负方向D.在时间内,P质点通过的路程是
二、多选题
9.如图甲,为某地新装的一批节能路灯,该路灯通过光控开关实现自动控制,电灯的亮度可自动随周围环境的亮度改变而改变。如图乙,为其内部电路简化原理图,电源电动势为E,内阻为r,为光敏电阻(光照强度增加时,其电阻值减小)。现减少光照强度,灯泡电阻不变,则下列判断正确的是( )
A.A、B灯都变暗B.A、B灯都变亮
C.电源的总功率变大D.电源的效率变大
10.利用如图所示的电路分析平行板电容器的动态变化,已知电源的内阻可忽略不计,R为电阻箱,一带负电的小球固定在电容器之间的O位置。则下列说法正确的是( )
A.保持电键闭合,M板向下平移少许,小球的电势能增大
B.保持电键闭合,将电阻箱的阻值增大,静电计的指针偏角减小
C.断开电键,M板向下平移少许,静电计的指针偏角减小
D.断开电键,M板向左平移少许,小球的电势能减少
11.如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中,一质量为m(质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,不计杆与导轨之间的摩擦。现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离L时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r,导轨电阻不计。则此过程中( )
A.杆的速度最大值为
B.流过电阻R的电量为
C.恒力F做的功大于回路中产生的焦耳热
D.恒力F做的功与安培力做的功之和等于杆动能的变化量
12.如图所示,空间中存在一个半径为R的圆形匀强磁场,方向垂直纸面向里,从圆形磁场边界上的P点沿不同方向射入两个不同电荷量、初速度大小相同的带电粒子A、B,A粒子与圆形磁场半径的夹角为α=30°,B粒子与圆形磁场半径的夹角为θ=60°,结果两粒子都会从边界上的C点射出。不计粒子的重力,则下列说法正确的是( )
A.A、B粒子带同种性质电荷
B.A、B粒子的比荷之比为
C.A、B粒子在磁场中做圆周运动的半径之比为
D.A、B粒子在磁场中运动的时间之比为
三、实验题
13.在用单摆测量重力加速度的实验中:
(1)为了尽量准确地测得重力加速度,组装单摆时应选用的器材是 。
A.长度约25cm的轻质细绳 B.长度约110cm的轻质细绳
C.直径约1cm的小钢球 D.直径约3cm的塑料球
(2)某同学用游标卡尺测量小球直径d,游标卡尺如图甲所示,由此可得小球直径 mm。
(3)该同学改变摆长进行了多次测量,得到了多组摆长L及对应的单摆周期T的数据,作出了图像如图乙所示,图中相关坐标的数据均为已知,可得当地的重力加速度为 。
14.某同学设计了图甲所示的实验电路,电路中各个器材元件的参数为:电池组(E约为6V,r约为3Ω)、电流表(量程2.0A,内阻RA=0.8Ω)、电阻箱R1(0~99.9Ω)、滑动变阻器R2、开关三个及导线若干。他认为该电路可以用来测电源的电动势、内阻和R2接入电路的阻值。
(1)先利用该电路测R2接入电路的阻值。他的主要操作步骤是:先将滑动变阻器滑片调到某位置,接着闭合S2、S,断开S1,读出电流表的示数I;再闭合S、S1,断开S2,调节电阻箱的电阻值为3.6Ω时,电流表的示数也为I。则此时滑动变阻器接入电路的阻值为 Ω。
(2)接着利用该电路测电源电动势和内电阻
①他的实验步骤为:
A.在闭合开关前,调节R1或R2至 (选填“最大值”或“最小值”),之后闭合开关S,再闭合 (选填“S1”或“S2”);
B.调节电阻R1或R2,得到一系列电阻值R和电流I的数据;
C.断开开关,整理实验仪器。
②图乙是他根据实验数据绘出的-R图像,电源电动势E= V,内阻r= Ω。(结果保留两位有效数字)。
四、解答题
15.如图所示,在倾角θ=30°的斜面上固定一间距L=0.5m的两平行光滑金属导轨,在导轨上端接入电源和滑动变阻器R,电源电动势E=12V,内阻r=1Ω,一质量m=20g的金属棒ab与两导轨垂直并接触良好并处于静止状态。整个装置处壬磁感应强度B=0.10T,垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计),取g=10m/s2。
求:(1)金属棒ab中电流Ⅰ的大小;
(2)滑动变阻器R接入电路中的阻值R。
16.如图所示,在xOy坐标系中,y>0的范围内存在着沿y轴正方向的匀强电场,在y<0的范围内存在着垂直纸面的匀强磁场(方向未画出)。现有一质量为m、电荷量大小为-q(重力不计)的带电粒子,以初速度v0(v0沿x轴正方向)从y轴上的a点出发,运动一段时间后,恰好从x轴上的d点第一次进入磁场,然后从O点第—次离开磁场。已知Oa=L,Od=2L,求:
(1)电场强度大小;
(2)粒子第一次通过x轴时的速度大小和方向;
(3)磁感应强度的大小和方向。
17.如图,平行光滑金属导轨由水平部分和倾斜部分平滑连接而成,导轨间距L=0.2m.水平导轨的一部分处于磁感应强度B=0.5T、方向垂直于水平导轨平面向上的匀强磁场中,与水平导轨垂直的虚线MN和PQ为磁场区域的左、右边界.在磁场中离左边界d=0.4m处垂直于水平导轨静置导体棒a,在倾斜导轨上高h≡0.2m处垂直于导轨放置导体棒b.现将导体棒b由静止释放,最终导体棒a以lm/s的速度从磁场右边界离开磁场区域.已知导体棒a、b的质量均为m=0.01kg,阻值均为R=0.1Ω,棒的长度均等于导轨间距,不计导轨电阻,运动过程中导体棒始终垂直于导轨且接触良好,重力加速度g=10m/s2.求:
(1)导体棒b刚进入磁场时,导体棒a的加速度大小;
(2)a棒离开磁场时,b棒的速度大小;
(3)整个过程中,回路中产生的焦耳热Q.
参考答案:
1.C
【详解】A.卡文迪什利用扭秤实验测出了万有引力常量,故A错误;
B.密立根通过油滴实验测定了电荷量e的数值,故B错误;
C.法拉第提出了场的概念,并提出了用电场线形象地描述电场,故C正确;
D.麦克斯韦提出了电磁场统一理论,而赫兹用实验证实了电磁波的存在,故D错误。
故选C。
2.D
【详解】A.c、d两点位于同一条等势线上,则c点的电势等于d点的电势,故A错误;
B.该电势分布图可等效为等量异种电荷产生的,a、b为两电荷连线上对称的两点,根据等量异种电荷的电场的特点,可以判断、这两个对称点的电场强度大小相等、方向相同,故B错误;
C.负电荷在电势低的地方电势能大,所以负电荷在电势低的c点的电势能大于在电势高的a点的电势能,故C错误;
D.正电荷在电势高的地方电势能大,所以将带正电的试探电荷从电势低b点移到电势高d点,电场力做负功,电势能增加,故D正确。
故选D。
3.B
【详解】A.通过线圈的磁通量变化量大小为
故A错误;
BC.线圈内磁通量向里增加,根据楞次定律可知线圈中感应电流方向为逆时针,根据左手定则可知,AB边受安培力方向向左,故B正确,C错误;
D.线圈内磁通量增加,根据楞次定律可知线圈有收缩的趋势,故D错误。
故选B。
4.D
【详解】ABC.开关S闭合的瞬间,电源的电压同时加到两支路的两端,B灯立即发光,由于线圈的自感电动势阻碍电流的增加, A灯逐渐变亮,由于线圈的电阻可以忽略,待电路稳定时,A灯会和B灯一样亮,故ABC错误;
D.断开开关S的瞬间,线圈与两灯一起构成一个新的自感回路,通过线圈的电流将逐渐减小,由于自感作用, A、B两灯同时缓慢熄灭,故D正确。
故选D。
5.A
【详解】A.原线圈两端电压U1=380V, 由
可知电压表示数为U示=U2=40V,所以A正确;
B.根据欧姆定律,通过副线圈的电流
通过原线圈的电流I1根据
得
所以电流表示数为,所以B错误;
CD.电阻R的功率为
所以电压器的输入功率、输出功率均等于P=80W,所以CD错误。
故选A。
6.C
【详解】分析图(b),确定感应电动势的周期,进一步确定角速度。根据正弦式交变电流的产生规律,确定感应电动势的最大值,求解磁感应强度大小。根据最大值求解有效值,根据闭合电路欧姆定律求解感应电流有效值。线框平面与磁场方向平行时,感应电动势最大。
【解答】A.分析图(b)可知,线框产生的感应电动势周期为0.4s,角速度
故A错误;
B.根据交变电流的产生规律可知,感应电动势最大值
解得磁感应强度
故B错误;
C.根据正弦式交变电流最大值和有效值的关系可知,有效值
根据闭合电路欧姆定律可知,感应电流的有效值
故C正确;
D.t=0时,感应电动势最大,则线框平面与磁场方向平行,即线框平面与磁感应强度方向的夹角为0,故D错误。
故选C。
【点评】此题考查了正弦式交变电流的产生规律,明确感应电动势最大值的表达式、最大值和有效值的关系,即可求解。
7.D
【详解】AB.回路的电流
安培力
方向沿左上方与水平方向夹角为37°;
对导体棒若则棒受摩擦力向右;若,则棒受摩擦力向左,选项AB错误;
CD.当最大静摩擦力向右时,G最小,则
解得
当最大静摩擦力向左时,G最大,则
解得
选项C错误,D正确。
故选D。
8.D
【详解】A.由图可知这列波的波长
故A 错误;
B.由振动方程得
则波速
故B错误;
C.根据振动方程知P点在0时刻后向上振动,在波形图中由同侧法得波向x轴正向传播,故C错误;
D.时间
在时间内,P质点通过的路程是
故D正确。
故选D。
9.BD
【详解】AB.减少光照强度,光敏电阻阻值增大,根据“串反并同”,A、B灯都变亮。A错误,B正确;
C.同理,干路电流减小根据
电源总功率变小,C错误;
D.根据
光敏电阻阻值增大,路端电压增大,电源效率增大,D正确。
故选BD。
10.CD
【详解】A.保持电键闭合,则电容器两极板间的电压保持不变,M板向下平移少许由
可知电容器两极板之间的电场强度增大,由于N板接地,则N板的电势为零,点O与N板之间的电势差为
可知O点的电势升高,则带负电的小球在O点的电势能减少,故A错误;
B.由电路可知,静电计两端的电压等于电容器两极板之间的电压,保持电键闭合,调节电阻箱的阻值,电容器两极板之间的电压不变,则静电计的指针保持不变,故B错误;
C.断开电键,电容器所带的电荷量保持不变,M板向下移动,由
可知电容器的电容变大,又因为
可知电容器两极板间的电压减小,则静电计的指针偏角减小,故C正确;
D.断开电键,电容器所带的电荷量保持不变,M板向左移动,则电容器的电容减小,则两极板间的电压增大,由于两极板之间的距离保持不变,电场强度增大,O点的电势升高,带电小球的电势能减少,故D正确。
故选CD。
11.BCD
【详解】A.当杆的速度最大时,杆受力平衡,有
由闭合电路欧姆定律有
以及感应电动势公式,联立解得
故A错误;
B.流过电阻R的电量为
故B正确;
C.根据能量守恒可知,恒力做的功转化为回路中产生的焦耳热和杆的动能,所以恒力F做的功大于回路中产生的焦耳热,故C正确;
D.根据动能定理可知,恒力F做的功与安培力做的功之和等于杆动能的变化量,故D正确。
故选BCD。
12.BD
【详解】A.粒子在磁场中运动的轨迹如图所示
根据左手定则可知,A粒子带负电,B粒子带正电,故A错误;
B.根据几何关系
根据洛伦兹力提供向心力有
所以
所以A、B粒子的比荷之比为,故B正确;
C.A、B粒子在磁场中做圆周运动的半径之比为,故C错误;
D.粒子在磁场中运动的时间为
A粒子圆心角为60°,B粒子的圆心角为120°,所以A、B粒子在磁场中运动的时间之比为,故D正确。
故选BD。
13. BC 8.6
【详解】(1)[1]为了便于实验数据测量,减小空气阻力影响,实验中摆线应适当长一些,小球密度应适当大一些。
故选BC。
(2)[2]根据游标卡尺的读数规律,该读数为
(3)[3]由单摆周期公式有
可得
结合图像可得
解得
14. 3.6 最大值 S1 6.0 2.8
【详解】(1)[1]用等值替代法可测出R2接入电路的阻值,电阻箱的示数等于接入电路的阻值为3.6Ω;
(2)①[2][3]要用电阻箱与电流表结合测量电动势与内阻,则要改变电阻箱的值,在闭合开关前,调节电阻R1或R2至最大值,之后闭合开关S,再闭合S1;
②[4][5]由闭合电路欧姆定律可得
变形得
由上式可知图线的斜率是电动势的倒数,图像的斜率为
解得
E=6.0V
图线在纵轴上的截距是
解得
r=2.8Ω
15.(1)2A;(2)5Ω
【详解】(1)对金属棒受力分析,根据几何关系有
根据安培力公式有
解得
I=2A
(2)根据闭合电路欧姆定律有
解得
R=5Ω
16.(1);(2),速度方向与x轴正方向夹角为45°;(3),方向垂直纸面向里
【详解】(1)粒子在匀强电场中做类平抛运动,根据牛顿第二定律可得其加速度大小为
①
设粒子做类平抛运动的时间为t,则x方向上有
2L=v0t ②
y方向上有
③
联立①②③解得
④
(2)粒子在d点的y方向分速度大小为
⑤
联立①②⑤解得
⑥
设粒子在d点速度方向与x轴正方向的夹角为α,则
⑦
解得
⑧
粒子第一次通过x轴时的速度大小为
⑨
(3)由题意可知粒子进入磁场后向左偏转,根据左手定则可知磁感应强度方向垂直纸面向里。如图所示,根据几何关系可知粒子在磁场中做匀速圆周运动的半径为
⑩
根据牛顿第二定律有
⑪
联立⑨⑩⑪解得
⑫
17.(1)导体棒b刚进入磁场时,导体棒a的加速度大小为10m/s2;(2)a棒离开磁场时,b棒的速度大小为1m/s;(3)整个过程中,回路中产生的焦耳热Q为0.015J
【详解】解:(1)金属棒下滑过程机械能守恒,由机械能守恒定律得:
进入磁场时产生的感应电动势:
感应电流:,
对金属棒,由牛顿第二定律得:
代入数据解得:
(2)、两棒组成的系统动量守恒,以向右为正方向,由动量守恒定律得:
代入数据解得:
(3)棒离开磁场前、两棒共速,此时两棒间的距离为
对导体棒,由动量定理得:
其中:,则:
通过回路的电荷量:
代入数据解得:
从棒离开磁场到棒到达磁场右边界过程,通过回路的电荷量为,棒到达右边界时的速度为
对,由动量定理得:
其中:,则:
通过回路的电荷量:
整个过程,由能量守恒定律得:
代入数据解得:
相关试卷
更多