衡水市重点中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图,,则下列比例式错误的是( )
A.B.C.D.
2.如图,二次函数y=ax1+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①1a+b=0;②4a﹣1b+c<0;③b1﹣4ac>0;④当y<0时,x<﹣1或x>1.其中正确的有( )
A.4个B.3个C.1个D.1个
3.图中三视图所对应的直观图是( )
A.B.C.D.
4.如图,在△ABC中,AD=AC,延长CD至B,使BD=CD,DE⊥BC交AB于点E,EC交AD于点F.下列四个结论:①EB=EC;②BC=2AD;③△ABC∽△FCD;④若AC=6,则DF=1.其中正确的个数有()
A.1B.2C.1D.4
5.已知反比例函数y=的图象上有三点A(4,y1),B(1.y1),c(,y3)则y1、y1、y3的大小关系为( )
A.y1>y1>y3B.y1>y1>y3C.y3>y1>y1D.y3>y1>y1
6.下列函数中,图象不经过点(2,1)的是( )
A.y=﹣x2+5B.y=C.y=xD.y=﹣2x+3
7.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )
A.甲B.乙C.丙D.丁
8.如图,菱形ABCD中,∠B=70°,AB=3,以AD为直径的⊙O交CD于点E,则弧DE的长为( )
A.πB.πC.πD.π
9.下列各组图形中,两个图形不一定是相似形的是( )
A.两个等边三角形B.有一个角是的两个等腰三角形
C.两个矩形D.两个正方形
10.为了得到函数的图象,可以将函数的图象( )
A.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度
B.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度
C.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度
D.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度
11.下列事件中为必然事件的是( )
A.打开电视机,正在播放茂名新闻B.早晨的太阳从东方升起
C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹
12.如图,下列条件不能判定△ADB∽△ABC的是( )
A.∠ABD=∠ACBB.∠ADB=∠ABC
C.AB2=AD•ACD.
二、填空题(每题4分,共24分)
13.古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_____cm的高跟鞋才能使人体近似满足黄金分割比例.(精确到1cm)
14.已知四条线段a、2、6、a+1成比例,则a的值为_____.
15.已知关于x的一元二次方程x2+px-3=0的一个根为-3,则它的另一根为________.
16.一男生推铅球,铅球行进高度y与水平距离x之间的关系是,则铅球推出的距离是_____.此时铅球行进高度是_____.
17.设a,b是方程x2+x﹣2018=0的两个实数根,则(a﹣1)(b﹣1)的值为_____.
18.若一元二次方程有一根为,则_________.
三、解答题(共78分)
19.(8分)如图①,在中,,是边上任意一点(点与点,不重合),以为一直角边作,,连接,.若和是等腰直角三角形.
(1)猜想线段,之间的数量关系及所在直线的位置关系,直接写出结论;
(2)现将图①中的绕着点顺时针旋转,得到图②,请判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由.
20.(8分)已知抛物线y=x2+mx﹣10与x轴的一个交点是(﹣,0),求m的值及另一个交点坐标.
21.(8分)如图在Rt△ABC中,∠C=90°,BD平分∠ABC,过D作DE⊥BD交AB于点E,经过B,D,E三点作⊙O.
(1)求证:AC与⊙O相切于D点;
(2)若AD=15,AE=9,求⊙O的半径.
22.(10分)如图,二次函数(其中)的图象与x轴分别交于点A、B(点A位于B的左侧),与y轴交于点C,过点C作x轴的平行线CD交二次函数图像于点D.
(1)当m2时,求A、B两点的坐标;
(2)过点A作射线AE交二次函数的图像于点E,使得BAEDAB.求点E的坐标(用含m的式子表示);
(3)在第(2)问的条件下,二次函数的顶点为F,过点C、F作直线与x轴于点G,试求出GF、AD、AE的长度为三边长的三角形的面积(用含m的式子表示).
23.(10分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.
24.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有_________名学生参加;
(2)直接写出表中_________,_________;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为_________.
25.(12分)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使,连接DE,分别交BC,AC交于点F,G.
(1)求证:;
(2)若,,求FG的长.
26.(12分)抛物线经过点O(0,0)与点A(4,0),顶点为点P,且最小值为-1.
(1)求抛物线的表达式;
(1)过点O作PA的平行线交抛物线对称轴于点M,交抛物线于另一点N,求ON的长;
(3)抛物线上是否存在一个点E,过点E作x轴的垂线,垂足为点F,使得△EFO∽△AMN,若存在,试求出点E的坐标;若不存在请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、C
4、C
5、C
6、D
7、B
8、A
9、C
10、A
11、B
12、D
二、填空题(每题4分,共24分)
13、1
14、3
15、1
16、1 2
17、﹣1
18、1
三、解答题(共78分)
19、(1)BE=AD,BE⊥AD ;(2)BE=AD,BE⊥AD仍然成立,理由见解析
20、m=﹣;另一个交点坐标(2,0)
21、(1)见解析;(2)1.
22、(1),;(2);(3)
23、∠P=50°
24、(1)50;(2)16;0.28;(3)见详解;(4)48%
25、 (1)证明见解析;(2)FG=2.
26、(1)抛物线的表达式为,(或);(1);(3)抛物线上存在点E,使得△EFO∽△AMN,这样的点共有1个,分别是(,)和(,).
甲
乙
丙
丁
平均数(cm)
181
186
181
186
方差
3.5
3.5
6.5
7.5
组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
齐齐哈尔市重点中学2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份齐齐哈尔市重点中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年菏泽市重点中学九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年菏泽市重点中学九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了下列方程属于一元二次方程的是,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年曲靖市重点中学九上数学期末质量跟踪监视试题含答案: 这是一份2023-2024学年曲靖市重点中学九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了下列说法正确的是,一元二次方程的常数项是等内容,欢迎下载使用。