湖南省湘西土家族苗族自治州古丈县2023-2024学年数学九上期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是( )
A.③—④—①—②B.②—①—④—③C.④—①—②—③D.④—①—③—②
2.如图,在平面直角坐标系中,正方形OABC的顶点O、B的坐标分别是(0,0),(2,0),则顶点C的坐标是( )
A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)
3.下列对于二次函数y=﹣x2+x图象的描述中,正确的是( )
A.开口向上B.对称轴是y轴
C.有最低点D.在对称轴右侧的部分从左往右是下降的
4.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )
A.25°B.20°C.15°D.30°
5.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为( )
A.3B.5C.8D.10
6.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为( )
A.2B.3C.4D.6
7.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数的图象可能是
A.B.C.D.
8.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于( )
A.B.C.D.
9.一元二次方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定
10.已知,,那么ab的值为( )
A.B.C.D.
11.用min{a,b}表示a,b两数中的最小数,若函数,则y的图象为( )
A.B.C.D.
12.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为( )
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2
二、填空题(每题4分,共24分)
13.已知圆锥的底面半径为3cm,母线长4cm,则它的侧面积为 cm1.
14.要使二次根式有意义,则的取值范围是________.
15.如图,以矩形ABCD的顶点A为圆心,线段AD长为半径画弧,交AB边于F点;再以顶点C为圆心,线段CD长为半径画弧,交AB边于点E,若AD=,CD=2,则DE、DF和EF围成的阴影部分面积是_____.
16.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为_____.
17.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”
题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)
如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,根据题意列方程为 .
18.某架飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-t2,这架飞机着陆后滑行最后150m所用的时间是_______s.
三、解答题(共78分)
19.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)写出不等式ax2+bx+c>0的解集;
(3)写出y随x的增大而减小的自变量x的取值范围.
20.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣4,1),B(﹣1,2),C(﹣2,4).
(1)将△ABC向右平移4个单位后得到△A1B1C1,请画出△A1B1C1,并写出点B1的坐标;
(2)△A2B2C2和△A1B1C1关于原点O中心对称,请画出△A2B2C2,并写出点C2的坐标;
(3)连接点A和点B2,点B和点A2,得到四边形AB2A2B,试判断四边形AB2A2B的形状(无须说明理由).
21.(8分)在一个不透明的布袋里装有3个标有1,2,3的小球,它们的形状,大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,然后放回袋中搅匀,王芳再从袋中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y).
(1)用列表或画树状图(只选其中一种)的方法表示出点M所有可能的坐标;
(2)求点M(x,y)在函数y=x2图象上的概率.
22.(10分)如图,在平行四边形ABCD中,AE⊥BC于点E.若一个三角形模板与△ABE完全重合地叠放在一起,现将该模板绕 点E顺时针旋转.要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,请探究平行四边形ABCD的角和边需要满足的条件.
23.(10分)解下列方程
(1)x2+4x﹣1=0
(2)(y+2)2=(3y﹣1)2
24.(10分)解方程:2x2﹣4x+1=1.
25.(12分)如图1,是一种自卸货车.如图2是货箱的示意图,货箱是一个底边AB水平的矩形,AB=8米,BC=2米,前端档板高DE=0.5米,底边AB离地面的距离为1.3米.卸货时,货箱底边AB的仰角α=37°(如图3),求此时档板最高点E离地面的高度.(精确到0.1米,参考值:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75)
26.(12分)如图1,已知中,,,,点、在上,点在外,边、与交于点、,交的延长线于点.
(1)求证:;
(2)当时,求的长;
(3)设,的面积为,
①求关于的函数关系式.
②如图2,连接、,若的面积是的面积的1.5倍时,求的值.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、D
4、A
5、C
6、D
7、C
8、A
9、A
10、C
11、C
12、A
二、填空题(每题4分,共24分)
13、11π
14、x≥1
15、2π+2﹣4
16、x1=2,x2=1
17、(x+1);.
18、1
三、解答题(共78分)
19、(1)x1=1,x2=3;(2)1<x<3;(3)x>2.
20、(1)如图,△A1B1C1为所作;见解析;点B1的坐标为(3,2);(2)如图,△A2B2C2为所作;见解析;点C2的坐标为(﹣2,﹣4);(3)如图,四边形AB2A2B为正方形.
21、(1)(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),见解析;(2)
22、详见解析.
23、 (1) x1=﹣2+,x2=﹣2﹣;(2) y1=﹣,y2=.
24、x1=1+,x2=1﹣
25、点E离地面的高度为8.1米
26、(1)证明见解析;(2);(3)①,②.
湖南省新化县2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份湖南省新化县2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了若点,,在反比例函数,抛物线与y轴的交点为,的值等于,已知甲、乙两地相距100等内容,欢迎下载使用。
湖南省湘西土家族苗族自治州名校2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份湖南省湘西土家族苗族自治州名校2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案,共9页。
湖南省常德市鼎城区2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份湖南省常德市鼎城区2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,若α为锐角,且,则α等于等内容,欢迎下载使用。