湖北恩施沙地中学2023-2024学年九上数学期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,,点O在直线上,若,,则的度数为( )
A.65°B.55°C.45°D.35°
2.一个菱形的边长是方程的一个根,其中一条对角线长为8,则该菱形的面积为( )
A.48B.24C.24或40D.48或80
3.将一元二次方程配方后所得的方程是( )
A.B.
C.D.
4.在平面直角坐标系中,若干个半径为1的单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,向右沿这条曲线做上下起伏运动(如图),点P在直线上运动的速度为每1个单位长度.点P在弧线上运动的速度为每秒个单位长度,则2019秒时,点P的坐标是( )
A.B.
C.D.
5.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是( )
A.∠AED=∠BB.∠ADE=∠CC.D.
6.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,则甲楼高度为( )
A.11米B.(36﹣15)米C.15米D.(36﹣10)米
7.如图,在中,中线相交于点,连接,则的值是( )
A.B.C.D.
8.如图,在矩形ABCD中,对角线AC,BD交与点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有( )
A.2条B.4条
C.5条D.6条
9.如图,在平面直角坐标系中,直线分别交轴,轴于两点,已知点的坐标为,若为线段的中点,连接,且,则的值是( )
A.12B.6C.8D.4
10.已知反比例函数,下列结论中不正确的是( )
A.图象经过点(-1,-1)B.图象在第一、三象限
C.当时,D.当时,y随着x的增大而增大
11.关于的一元二次方程有实数根,则满足( )
A.B.且C.且D.
12.如图,Rt△ABC中,∠B=90°,AB=3,BC=2,则csA=( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,点在双曲线上,且轴于,若的面积为,则的值为__________.
14.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当取四个不同数值时此二次函数的图象.发现它们的顶点在同一条直线上,那么这条直线的表达式是_________.
15.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1、弧K1K2、弧K2K3、弧K3K4、弧K4K5、弧K5K6、…的圆心依次按点A、B、C、D、E、F循环,其弧长分别为l1、l2、l3、l4、l5、l6、….当AB=1时,l3=________,l2019=_________.
16.如图,双曲线与⊙O在第一象限内交于P、Q 两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为______.
17.一元二次方程x2﹣x=0的根是_____.
18.若(m-1) +2mx-1=0是关于x的一元二次方程,则m的值是______.
三、解答题(共78分)
19.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.
(1)求该企业从2014年到2016年利润的年平均增长率;
(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
20.(8分)如图所示,已知扇形AOB的半径为6㎝,圆心角的度数为120°,若将此扇形围成一个圆锥,
则:
(1)求出围成的圆锥的侧面积为多少;
(2)求出该圆锥的底面半径是多少.
21.(8分)如图,已知是等边三角形的外接圆,点在圆上,在的延长线上有一点,使,交于点.
(1)求证:是的切线
(2)若,求的长
22.(10分)已知一个二次函数的图象经过点、和三点.
(1)求此二次函数的解析式;
(2)求此二次函数的图象的对称轴和顶点坐标.
23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与两坐标轴分别交于点A、B、C,直线y=﹣x+4经过点B,与y轴交点为D,M(3,﹣4)是抛物线的顶点.
(1)求抛物线的解析式.
(2)已知点N在对称轴上,且AN+DN的值最小.求点N的坐标.
(3)在(2)的条件下,若点E与点C关于对称轴对称,请你画出△EMN并求它的面积.
(4)在(2)的条件下,在坐标平面内是否存在点P,使以A、B、N、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
24.(10分)如图,在中,.以为直径的与交于点,与交于点,点在边的延长线上,且.
(1)试说明是的切线;
(2)过点作,垂足为.若,,求的半径;
(3)连接,设的面积为,的面积为,若,,求的长.
25.(12分) “脱贫攻坚战”打响以来,全国贫困人口减少了 8000多万人。某市为了扎实落实脱贫攻坚中“两 不愁,三保障”的住房保障工作,2017年投入5亿元资金,之后投入资金逐年增长,2019年投 入7.2亿元资金用于保障性住房建设.
(1)求该市这两年投入资金的年平均增长率.
(2)2020年该市计划保持相同的年平均増长率投入资金用于保障性住房建设,如果每户能得到 保障房补助款3万元,则2020年该市能够帮助多少户建设保障性住房?
26.(12分)如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、B
5、D
6、D
7、B
8、D
9、A
10、D
11、C
12、D
二、填空题(每题4分,共24分)
13、
14、
15、π 673π
16、1.
17、x1=0,x2=1
18、-2
三、解答题(共78分)
19、(1)20%;(2)能.
20、(1)11π;(1)1.
21、(1)证明见解析;(2)1
22、(1);(2)对称轴是直线,顶点坐标是.
23、(1)y=x2﹣6x+5;(2)N(3,);(3)画图见解析,S△EMN=;(4)存在,满足条件的点P的坐标为(3,﹣)或(7,)或(﹣1,).
24、(1)详见解析;(2)3;(3).
25、(1)年平均增长率为20%;(2)28800户
26、4秒
湖北省恩施市崔坝、沙地、双河、新塘四校2023-2024学年九上数学期末经典模拟试题含答案: 这是一份湖北省恩施市崔坝、沙地、双河、新塘四校2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了三角形的内心是等内容,欢迎下载使用。
湖北恩施龙凤民族初级中学2023-2024学年九上数学期末经典模拟试题含答案: 这是一份湖北恩施龙凤民族初级中学2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了下列事件中是必然事件的是,下列说法正确的是,国家规定存款利息的纳税办法是等内容,欢迎下载使用。
湖北恩施崔坝中学2023-2024学年数学八上期末质量检测模拟试题含答案: 这是一份湖北恩施崔坝中学2023-2024学年数学八上期末质量检测模拟试题含答案,共6页。试卷主要包含了若分式等于零,则的值是,9的平方根是等内容,欢迎下载使用。