新疆乌鲁木齐市第九十八中学2023-2024学年九上数学期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,在中,,,,点为上任意一点,连结,以,为邻边作平行四边形,连结,则的最小值为( )
A.B.C.D.
2.如图,在正方形ABCD中,AB=5,点M在CD的边上,且DM=2,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为( )
A.B.C.D.
3.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为( )
A.8.5B.7.5C.9.5D.8
4.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为( )
A.2:5B.3:5C.9:25D.4:25
5.如图,已知,,,的长为( )
A.4B.6C.8D.10
6.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为( )
A.9B.12π﹣9C.D.6π﹣
7.已知抛物线与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为( )
A.B.C.D.
8.下列对抛物线y=-2(x-1)2+3性质的描写中,正确的是( )
A.开口向上B.对称轴是直线x=1C.顶点坐标是(-1,3)D.函数y有最小值
9.如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )
A.10米B.15米C.25米D.30米
10.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为( )
A.5.5×103B.55×103C.0.55×105D.5.5×104
11.如图,已知小明、小颖之间的距离为3.6m,他们在同一盏路灯下的影长分别为1.8m,1.6m,已知小明、小颖的身高分别为1.8m,1.6m,则路灯的高为( )
A.3.4mB.3.5mC.3.6mD.3.7m
12.如图,为圆的切线,交圆于点,为圆上一点,若,则的度数为( ).
A.B.C.D.
二、填空题(每题4分,共24分)
13.若点是双曲线上的点,则__________(填“>”,“<”或“=”)
14.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为______________________.
15.如图,将一张正方形纸片,依次沿着折痕,(其中)向上翻折两次,形成“小船”的图样.若,四边形与的周长差为,则正方形的周长为______.
16.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点处有一块爆米花残渣,且,一只蚂蚁从杯口的点处沿圆锥表面爬行到点,则此蚂蚁爬行的最短距离为____.
17.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.
18.如图,直角三角形中,,,,在线段上取一点,作交于点,现将沿折叠,使点落在线段上,对应点记为;的中点的对应点记为.若,则______.
三、解答题(共78分)
19.(8分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接.
(1)求证:;
(2)若,,求的长.
20.(8分)如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)
21.(8分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).
(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点.
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
22.(10分)阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为连个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解;各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想——转化,即把未知转化为已知来求解.
用“转化”的数学思想,我们还可以解一些新的方程.
例如,解一元三次方程,通过因式分解把它转化为,通过解方程和,可得原方程的解.
再例如,解根号下含有来知数的方程:,通过两边同时平方把它转化为,解得:. 因为,且,所以不是原方程的根,是原方程的解.
(1)问题:方程的解是,__________,__________;
(2)拓展:求方程的解.
23.(10分)已知抛物线的顶点为,且过点.直线与轴相交于点.
(1)求该抛物线的解析式;
(2)以线段为直径的圆与射线相交于点,求点的坐标.
24.(10分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;
(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;
25.(12分)如图,⊙O的半径为,A、B为⊙O上两点,C为⊙O内一点,AC⊥BC,AC=,BC=.
(1)判断点O、C、B的位置关系;
(2)求图中阴影部分的面积.
26.(12分)解方程:
(1)(x2)(x3)12
(2)3y212y
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、A
4、C
5、D
6、A
7、A
8、B
9、B
10、D
11、B
12、B
二、填空题(每题4分,共24分)
13、>
14、
15、1
16、
17、2
18、3.2
三、解答题(共78分)
19、(1)见解析;(2)
20、28.3海里
21、(1)点B的坐标为(1,0).
(2)①点P的坐标为(4,21)或(-4,5).
②线段QD长度的最大值为.
22、(1);(2)
23、(1);(2)或
24、(1)y=x2﹣x﹣6;(2)点D的坐标为(,﹣5);(3)△BCE的面积有最大值,点E坐标为(,﹣).
25、(1)O、C、B三点在一条直线上,见解析;(2)
26、(1),;(2)
新疆乌鲁木齐市名校2023-2024学年九上数学期末联考模拟试题含答案: 这是一份新疆乌鲁木齐市名校2023-2024学年九上数学期末联考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,P关于原点对称的点的坐标是,下列命题中,真命题是等内容,欢迎下载使用。
2023-2024学年新疆乌鲁木齐市名校九上数学期末监测模拟试题含答案: 这是一份2023-2024学年新疆乌鲁木齐市名校九上数学期末监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,阅读理解,方程是关于的一元二次方程,则等内容,欢迎下载使用。
2023-2024学年新疆乌鲁木齐市数学九上期末学业质量监测试题含答案: 这是一份2023-2024学年新疆乌鲁木齐市数学九上期末学业质量监测试题含答案,共7页。试卷主要包含了下列实数中,介于与之间的是等内容,欢迎下载使用。