山东省荣成市第三十五中学2023-2024学年九上数学期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.反比例函数与正比例函数在同一坐标系中的大致图象可能是( )
A.B.
C.D.
2.正六边形的周长为6,则它的面积为( )
A.B.C.D.
3.某车间20名工人日加工零件数如表所示:
这些工人日加工零件数的众数、中位数、平均数分别是( )
A.5、6、5B.5、5、6C.6、5、6D.5、6、6
4.已知关于的一元二次方程有一个根为,则另一个根为( )
A.B.C.D.
5.P(3,-2)关于原点对称的点的坐标是( )
A.(3,2)B.(-3,2)C.(-3,-2)D.(3,-2)
6.老师出示了如图所示的小黑板上的题后,小华说:过点;小明说:;小颖说:轴被抛物线截得的线段长为2,三人的说法中,正确的有( )
A.1个B.2个C.3个D.0个
7.对于反比例函数,下列说法正确的是( )
A.的值随值的增大而增大B.的值随值的增大而减小
C.当时,的值随值的增大而增大D.当时,的值随值的增大而减小
8.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为( )
A.4B.4C.6D.4
9.如图,在中,DE∥BC,,,,( )
A.8B.9C.10D.12
10.有甲、乙、丙、丁四架机床生产一种直径为20mm圆柱形零件,从各自生产的零件中任意抽取10件进行检测,得出各自的平均直径均为20mm,每架机床生产的零件的方差如表:
则在这四台机床中生产的零件最稳定的是( ).
A.甲B.乙C.丙D.丁
11.已知函数y=ax2-2ax-1(a是常数且a≠0),下列结论正确的是( )
A.当a=1时,函数图像过点(-1,1)
B.当a= -2时,函数图像与x轴没有交点
C.当a,则当x1时,y随x的增大而减小
D.当a,则当x1时,y随x的增大而增大
12.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是( )
A. 或
B. 或
C. 或
D.
二、填空题(每题4分,共24分)
13.当时,二次函数有最大值4,则实数的值为________.
14.请写出一个位于第一、三象限的反比例函数表达式,y = .
15.如图,在平面直角坐标系中,等腰Rt△OA1B1的斜边OA1=2,且OA1在x轴的正半轴上,点B1落在第一象限内.将Rt△OA1B1绕原点O逆时针旋转45°,得到Rt△OA2B2,再将Rt△OA2B2绕原点O逆时针旋转45°,又得到Rt△OA3B3,……,依此规律继续旋转,得到Rt△OA2019B2019,则点B2019的坐标为_____.
16.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的是______________(只填序号)
17.已知非负数a、b、c满足a+b=2,,,则d的取值范围为____.
18.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm1.
三、解答题(共78分)
19.(8分)某商场经销一种布鞋,已知这种布鞋的成本价为每双30元.市场调查发现,这种布鞋每天的销售量y(单位:双)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种布鞋每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种布鞋销售单价定价为多少元时,每天的销售利润最大?最大利润是多少元?
20.(8分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC、DC(或它们的延长线)于点M,N.
(1)当∠MAN绕点A旋转到(如图1)时,求证:BM+DN=MN;
(2)当∠MAN绕点A旋转到如图2的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?请直接写出你的猜想。(不需要证明)
21.(8分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,
(1)求抛物线的解析式;
(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.
①求此时m的值.
②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
22.(10分)某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为,,,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为,,.
(1)小亮将妈妈分类好的三类垃圾随机投入到三种垃圾箱内,请用画树状图或表格的方法表示所有可能性,并请求出小亮投放正确的概率.
(2)请你就小亮投放垃圾的事件提出两条合理化建议.
23.(10分)如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA· PB=PC·PD
(1)如图(2),若AB与CD相交于圆外一点P, 上面的结论是否成立?请说明理由.
(2)如图(3),将PD绕点P逆时针旋转至与⊙O相切于点C, 直接写出PA、PB、PC之间的数量关系.
(3)如图(3),直接利用(2)的结论,求当 PC= ,PA=1时,阴影部分的面积.
24.(10分)如图,抛物线与轴交于两点,与轴交于点,且.直线与抛物线交于两点,与轴交于点,点是抛物线的顶点,设直线上方的抛物线上的动点的横坐标为.
(1)求该抛物线的解析式及顶点的坐标.
(2)连接,直接写出线段与线段的数量关系和位置关系.
(3)连接,当为何值时?
(4)在直线上是否存在一点,使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
25.(12分)在下列网格中,每个小正方形的边长均为1个单位,△ABC在网格中的位置如图所示:
(1)在图中画出△ABC先向右平移2个单位,再向上平移3个单位后的图形;
(2)若点A的坐标是(-4,-3),试在图中画出平面直角坐标系,坐标系的原点记作O;
(3)根据(2)的坐标系,作出以O为旋转中心,逆时针旋转90º后的图形,并求出点A一共运动的路径长.
26.(12分)在一个不透明的布袋中,有个红球,个白球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出个球,摸到红球的概率是________;
(2)搅匀后先从中任意摸出个球(不放回),再从余下的球中任意摸出个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、D
4、B
5、B
6、B
7、C
8、B
9、D
10、A
11、D
12、B
二、填空题(每题4分,共24分)
13、2或
14、(答案不唯一).
15、(﹣1,1)
16、①③④
17、5≤d≤1.
18、60π
三、解答题(共78分)
19、(1)w=﹣x2+90x﹣1800;(2)这种布鞋销售单价定价为45元时,每天的销售利润最大,最大利润是,225元
20、(1)见解析;(2)DN-BM=MN
21、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为
22、(1);(2)详见解析.
23、(1)成立,理由见解析;(2);(3)
24、(1),点的坐标为(2)线段与线段平行且相等(3)或1(4)存在;点的坐标为(0,3)或(,2)
25、(1)见解析;(2)见解析;(3)图见解析,点A一共运动的路径长为
26、(1);(2)见解析,.
日加工零件数
4
5
6
7
8
人数
2
6
5
4
3
机床型号
甲
乙
丙
丁
方差mm2
0.012
0.020
0.015
0.102
山东省乐陵市实验中学2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份山东省乐陵市实验中学2023-2024学年九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年山东省荣成市第十四中学数学九上期末学业质量监测试题含答案: 这是一份2023-2024学年山东省荣成市第十四中学数学九上期末学业质量监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,在中,,,则的值为,坡比常用来反映斜坡的倾斜程度等内容,欢迎下载使用。
山东省王浩屯中学2023-2024学年九上数学期末达标检测试题含答案: 这是一份山东省王浩屯中学2023-2024学年九上数学期末达标检测试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。