山东省威海市环翠区2023-2024学年九年级数学第一学期期末教学质量检测试题含答案
展开这是一份山东省威海市环翠区2023-2024学年九年级数学第一学期期末教学质量检测试题含答案,共8页。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,二次函数的图象,则下列结论正确的是( )
①;②;③;④
A.①②③B.②③④C.①③④D.①②③④
2.若点P(﹣m,﹣3)在第四象限,则m满足( )
A.m>3B.0<m≤3C.m<0D.m<0或m>3
3.下列命题正确的个数有( )
①两边成比例且有一角对应相等的两个三角形相似;
②对角线相等的四边形是矩形;
③任意四边形的中点四边形是平行四边形;
④两个相似多边形的面积比为2:3,则周长比为4:1.
A.1个B.2个C.3个D.4个
4.已知x1,x2是一元二次方程x2-2x-1=0的两根,则x1+x2-x1·x2的值是( )
A.1B.3C.-1D.-3
5.在下列命题中,正确的是
A.对角线相等的四边形是平行四边形
B.有一个角是直角的四边形是矩形
C.有一组邻边相等的平行四边形是菱形
D.对角线互相垂直平分的四边形是正方形
6.已知⊙O的半径为6cm,OP=8cm,则点P和⊙O的位置关系是( )
A.点P在圆内B.点P在圆上C.点P在圆外D.无法判断
7.若反比例函数图象上有两个点,设,则不经过第( )象限.
A.一B.二C.三D.四
8.如图,在正方形中,绕点顺时针旋转后与重合,,,则的长度为( )
A.4B.C.5D.
9.在反比例函数图像的每一条曲线上,y都随x的增大而增大,则b的取值范围是( )
A.b=3B.C.D.
10.二次函数y=a+bx+c的图象如图所示,则下列关系式错误的是( )
A.a<0B.b>0C.﹣4ac>0D.a+b+c<0
11.已知关于x的分式方程=1的解是非负数,则m的取值范围是( )
A.m1B.m1
C.m-1且m≠0D.m-1
12.如图,△ABC中,D是AB的中点,DE∥BC,连接BE.若AE=6,DE=5,∠BEC=90°,则△BCE的周长是( )
A.12B.24C.36D.48
二、填空题(每题4分,共24分)
13.在平面直角坐标系中,正方形ABCD的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,延长交轴于点,作正方形,…按这样的规律进行下去,第个正方形的面积为_____________.
14.将抛物线y=x2﹣2x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为____________________________
15.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.
16.若等腰三角形的两边长恰为方程的两实数根,则的周长为________________.
17.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长.
18.剪掉边长为2的正方形纸片4个直角,得到一个正八边形,则这个正八边形的边长为____________.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,点B的坐标是(2,2),将线段OB绕点O顺时针旋转120°,点B的对应点是点B1.
(1)①求点B绕点O旋转到点B1所经过的路程长;
②在图中画出1,并直接写出点B1的坐标是 ;
(2)有7个球除了编号不同外,其他均相同,李南和王易设计了如下的一个规则:
装入不透明的甲袋, 装入不透明的乙袋,李南从甲袋中,王易从乙袋中,各自随机地摸出一个球(不放回),把李南摸出的球的编号作为横坐标x,把王易摸出的球的编号作为纵坐标y,用列表法或画树状图法表示出(x,y)的所有可能出现的结果;
(3)李南和王易各取一次小球所确定的点(x,y)落在1上的概率是 .
20.(8分)如图,是线段上--动点,以为直径作半圆,过点作交半圆于点,连接.已知,设两点间的距离为,的面积为.(当点与点或点重合时,的值为)请根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究. (注: 本题所有数值均保留一位小数)
通过画图、测量、计算,得到了与的几组值,如下表:
补全表格中的数值: ; ; .
根据表中数值,继续描出中剩余的三个点,画出该函数的图象并写出这个函数的一条性质;
结合函数图象,直接写出当的面积等于时,的长度约为___ _.
21.(8分)如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.
(1)求证:AD是⊙O的切线;
(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.
22.(10分)计算:
(1)2sin30°+cs45°tan60°
(2) ()0 ()-2 tan2 30 .
23.(10分)如图1,▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F.
(1)求证:四边形EBFD是平行四边形;
(2)如图2,小明在完成(1)的证明后继续进行了探索.连接AF、CE,分别交BE、FD于点G、H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图3)中补全他的证明思路,再在答题纸上写出规范的证明过程.
24.(10分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.
(1)甲选择A检票通道的概率是 ;
(2)求甲乙两人选择的检票通道恰好相同的概率.
25.(12分)如图,Rt△ABC中,∠B=90°,点D在边AC上,且DE⊥AC交BC于点E.
(1)求证:△CDE∽△CBA;
(2)若AB=3,AC=5,E是BC中点,求DE的长.
26.(12分)已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).
(1)求该二次函数的解析式;
(2)判断点C(2,﹣3),D(﹣1,1)是否在该函数图象上,并说明理由.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、A
4、B
5、C
6、C
7、C
8、D
9、C
10、D
11、C
12、B
二、填空题(每题4分,共24分)
13、
14、或
15、216°.
16、1
17、这个“果圆”被y轴截得的线段CD的长3+.
18、
三、解答题(共78分)
19、(1)①;②见解析,B1的坐标是(0,﹣4);(2)见详解;(3)
20、(1)3.1,9.3,7.3;(2)见解析;(3)或.
21、(1)证明见解析;(2)PA+PB=PF+FC=PC;(3)1+.
22、(1)-2(2)
23、(1)证明见解析;(2)证明见解析
24、(1);(2).
25、(1)证明见解析;(2)DE=.
26、(1);(2)C在,D不在,见解析
相关试卷
这是一份山东省威海市环翠区2023-2024学年九年级上学期期末数学试题,共12页。试卷主要包含了等边三角形的边心距和半径之比为,下列五个命题,关于二次函数,下列说法错误的是,如图,在中,于点,则半经为,如图等内容,欢迎下载使用。
这是一份山东省威海市环翠区2023-2024学年七年级上学期期末数学试题(含答案),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省威海市环翠区2023-2024学年数学九年级第一学期期末检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。