安徽省黄山市2023-2024学年数学九上期末综合测试模拟试题含答案
展开
这是一份安徽省黄山市2023-2024学年数学九上期末综合测试模拟试题含答案,共9页。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,的直径,弦于.若,则的长是( )
A.B.C.D.
2.如图,点A,B,C都在⊙O上,若∠C=30°,则∠AOB的度数为( )
A.30°B.60°C.150°D.120°
3.如果一个一元二次方程的根是x1=x2=1,那么这个方程是
A.(x+1)2=0
B.(x-1)2=0
C.x2=1
D.x2+1=0
4.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )
A.主视图改变,左视图改变B.俯视图不变,左视图不变
C.俯视图改变,左视图改变D.主视图改变,左视图不变
5.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈B.四丈五尺C.一丈D.五尺
6.将二次函数y=5x2的图象先向右平移2个单位,再向下平移3个单位,得到的函数图象的解析式为( )
A.y=5(x+2)2+3B.y=5(x﹣2)2+3
C.y=5(x+2)2﹣3D.y=5(x﹣2)2﹣3
7.已知Rt△ABC中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( )
A.;B.;C.;D.以上都不对;
8.如图,在平面直角坐标系中,点在直线上,连接,将线段绕点顺时针旋转90°,点的对应点恰好落在直线上,则的值为( )
A.2B.1C.D.
9.如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于( )
A.20°B.35°C.40°D.55°
10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0),则下面的四个结论,其中正确的个数为( )
①2a+b=0②4a﹣2b+c<0③ac>0④当y>0时,﹣1<x<4
A.1个B.2个C.3个D.4个
11.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是( )
①;②;③;④
A.1B.2C.3D.4
12.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,则∠A的度数为( )
A.70°B.75°C.60°D.65°
二、填空题(每题4分,共24分)
13.已知y=x2+(1﹣a)x+2是关于x的二次函数,当x的取值范围是0≤x≤4时,y仅在x=4时取得最大值,则实数a的取值范围是_____.
14.抛物线y=(x+2)2-2的顶点坐标是________.
15.河北省赵县的赵州桥的拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO为4m时,这时水面宽度AB 为______________.
16.如图,在等腰直角三角形中,,点在轴上,点的坐标为(0,3),若点恰好在反比例函数第一象限的图象上,过点作轴于点,那么点的坐标为__________.
17.下面是“用三角板画圆的切线”的画图过程.
如图1,已知圆上一点A,画过A点的圆的切线.
画法:(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;
(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.
所以直线AD就是过点A的圆的切线.
请回答:该画图的依据是______________________________________.
18.若二次函数y=mx2+2x+1的图象与x轴有公共点,则m的取值范围是 _____.
三、解答题(共78分)
19.(8分)如图,在四边形中,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.
(1)求证:;
(2)若,试求四边形的对角线的长.
20.(8分)如图,在中,,是边上的中线,平分交于点、交于点,,.
(1)求的长;
(2)证明:;
(3)求的值.
21.(8分)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.
(1)求AB与CD之间的距离(结果保留根号).
(2)求建筑物CD的高度(结果精确到1m).(参考数据:,,,)
22.(10分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
23.(10分)如图,是半圆上的三等分点,直径,连接,垂足为交于点,求的度数和涂色部分的面积.
24.(10分)如图,斜坡的坡度是1:2.2(坡面的铅直高度与水平宽度的比称为坡度),这个斜坡的水平宽度是22米,在坡顶处的同一水平面上()有一座古塔.在坡底处看塔顶的仰角是45°,在坡顶处看塔顶的仰角是60°,求塔高的长.(结果保留根号)
25.(12分)春节前,某超市从厂家购进某商品,已知该商品每个的成本价为30元,经市场调查发现,该商品每天的销售量 (个)与销售单价 (元) 之间满足一次函数关系,当该商晶每个售价为40元时,每天可卖出300个;当该商晶每个售价为60元时,每天可卖出100个.
(1)与之间的函数关系式为__________________(不要求写出的取值范围) ;
(2)若超市老板想达到每天不低于220个的销售量,则该商品每个售价定为多少元时,每天的销售利润最大?最大利润是多少元?
26.(12分)如图,的直径为,点在上,点,分别在,的延长线上,,垂足为,.
(1)求证:是的切线;
(2)若,,求的长.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、B
4、D
5、B
6、D
7、C
8、D
9、A
10、B
11、C
12、B
二、填空题(每题4分,共24分)
13、a<1
14、(-2,-2)
15、
16、(5,2)
17、90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线
18、m≤1且m≠1.
三、解答题(共78分)
19、(1)见解析;(2).
20、(1)13 (2)证明见解析 (3)
21、(1);(2)51m
22、(1);(2)x>1;(3)P(﹣,0)或(,0)
23、,.
24、米
25、(1);(2)该商品每个售价定为48元时,每天的销售利润最大,最大利润是3960元
26、(1)见解析;(2)
相关试卷
这是一份安徽省部分地区2023-2024学年数学九上期末综合测试模拟试题含答案,共7页。试卷主要包含了一元二次方程的解是等内容,欢迎下载使用。
这是一份安徽省黄山市名校2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了如图所示,该几何体的俯视图是,一人乘雪橇沿坡比1等内容,欢迎下载使用。
这是一份2023-2024学年安徽省黄山市新世纪学校数学九上期末复习检测模拟试题含答案,共7页。试卷主要包含了已知a、b、c、d是比例线段,解方程,选择最适当的方法是等内容,欢迎下载使用。