安徽省宿州埇桥区教育集团四校联考2023-2024学年九年级数学第一学期期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,在中,,,,则
A.B.C.D.
2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )
A.B.C.D.1
3.反比例函数,下列说法不正确的是( )
A.图象经过点(1,-3)B.图象位于第二、四象限
C.图象关于直线y=x对称D.y随x的增大而增大
4.如图,在平面直角坐标系xOy中,二次函数的图象经过点A,B,对系数和判断正确的是( )
A.B.C.D.
5.下列图形中,是轴对称图形但不是中心对称图形的是( )
A.平行四边形B.等腰三角形C.矩形D.正方形
6.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有( )
A.6个B.16个C.18个D.24个
7.下列图形中,既是轴对称图形又是中心对称图形的是( )
A.平行四边形B.菱形C.等边三角形D.等腰直角三角形
8.已知正多边形的一个外角为36°,则该正多边形的边数为( ).
A.12B.10C.8D.6
9.口袋中有2个红球和1个黑球,每次摸到后放回,两次都摸到红球的概率为( )
A.B.C.D.
10.一元二次方程x2﹣x﹣2=0的解是( )
A.x1=﹣1,x2=﹣2
B.x1=1,x2=﹣2
C.x1=1,x2=2
D.x1=﹣1,x2=2
11.如图,在平面直角坐标系中,的顶点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是( )
A.B.C.D.
12.海南渔民从事海洋捕捞已有上千年历史,南海是海南渔民的“祖宗海”,目前海南共有约25万人从事渔业生产.这个数据用科学记数法表示为( )
A.2.5×106人B.25×104人C.2.5×104人D.2.5×105人
二、填空题(每题4分,共24分)
13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被 4 整除的概率是__________.
14.抛物线y=3(x﹣2)2+5的顶点坐标是_____.
15.若抛物线经过(3,0),对称轴经过(1,0),则_______.
16.如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= .
17.如果关于x的方程x2﹣5x+k=0没有实数根,那么k的值为________
18.二次函数y=x2-2x+1的对称轴方程是x=_______.
三、解答题(共78分)
19.(8分)如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,
(1)求B到C的距离;
(2)如果在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由(≈1.732).
20.(8分)如图,是的直径,是弦,是弧的中点,过点作垂直于直线垂足为,交的延长线于点.
求证:是的切线;
若,求的半径.
21.(8分)如图,在中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作于点H,连接DE交线段OA于点F.
(1)试猜想直线DH与⊙O的位置关系,并说明理由;
(2)若AE=AH,EF=4,求DF的值.
22.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图(1),连接AF、CE.
①四边形AFCE是什么特殊四边形?说明理由;
②求AF的长;
(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
23.(10分)解下列方程:
(1)
(2)
24.(10分)如图,已知EC∥AB,∠EDA=∠ABF.
(1)求证:四边形ABCD是平行四边形;
(2)求证:=OE•OF.
25.(12分)如图,在△ABC中,AB=4cm,AC=6cm.
(1)作图:作BC边的垂直平分线分别交与AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连结BD,求△ABD的周长.
26.(12分)教育部基础教育司负责人解读“2020新中考”时强调要注重学生分析与解决问题的能力,要增强学生的创新精神和综合素质.王老师想尝试改变教学方法,将以往教会学生做题改为引导学生会学习.于是她在菱形的学习中,引导同学们解决菱形中的一个问题时,采用了以下过程(请解决王老师提出的问题):
先出示问题(1):如图1,在等边三角形中,为上一点,为上一点,如果,连接、,、相交于点,求的度数.
通过学习,王老师请同学们说说自己的收获.小明说发现一个结论:在这个等边三角形中,只要满足,则的度数就是一个定值,不会发生改变.紧接着王老师出示了问题(2):如图2,在菱形中,,为上一点,为上一点,,连接、,、相交于点,如果,,求出菱形的边长.
问题(3):通过以上的学习请写出你得到的启示(一条即可).
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、D
4、D
5、B
6、B
7、B
8、B
9、D
10、D
11、D
12、D
二、填空题(每题4分,共24分)
13、
14、(2,5).
15、1
16、1.
17、k>
18、1
三、解答题(共78分)
19、(1)12海里;(2)该货船无触礁危险,理由见解析
20、(1)详见解析;(2)⊙O的半径为.
21、(1)直线与⊙O相切,理由见解析;(2)DF=6
22、(1) ①菱形,理由见解析;②AF=1;(2) 秒.
23、
24、(1)证明见解析;(2)证明见解析.
25、(1)详见解析;(2)10cm.
26、(1);(2);(3)答案不唯一,合理即可
安徽省宿州市埇桥区教育集团2023-2024学年九年级数学第一学期期末经典试题含答案: 这是一份安徽省宿州市埇桥区教育集团2023-2024学年九年级数学第一学期期末经典试题含答案,共8页。试卷主要包含了已知抛物线y=x2+等内容,欢迎下载使用。
安徽省宿州埇桥区七校联考2023-2024学年九年级数学第一学期期末经典模拟试题含答案: 这是一份安徽省宿州埇桥区七校联考2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了下列事件中是随机事件的是等内容,欢迎下载使用。
安徽省宿州埇桥区教育集团四校联考2023-2024学年数学九年级第一学期期末检测试题含答案: 这是一份安徽省宿州埇桥区教育集团四校联考2023-2024学年数学九年级第一学期期末检测试题含答案,共7页。试卷主要包含了若,则下列等式一定成立的是,在中,,,下列结论中,正确的是等内容,欢迎下载使用。