吉林省长春汽车经济技术开发区2023-2024学年九年级数学第一学期期末统考模拟试题含答案
展开
这是一份吉林省长春汽车经济技术开发区2023-2024学年九年级数学第一学期期末统考模拟试题含答案,共10页。试卷主要包含了若,,则以为根的一元二次方程是,如图所示,几何体的左视图为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.2018年,临江市生产总值为1587.33亿元,请用科学记数法将1587.33亿表示为( )
A.1587.33×108B.1.58733×1013
C.1.58733×1011D.1.58733×1012
2.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于( )
A.20°B.40°C.70°D.80°
3.如图,小江同学把三角尺含有角的一端以不同的方向穿入进另一把三角尺(含有角)的孔洞中,已知孔洞的最长边为,则三角尺穿过孔洞部分的最大面积为( )
A.B.C.D.
4.如图,△ABC中,AB=25,BC=7,CA=1.则sinA的值为( )
A.B.C.D.
5. “三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,,点,可在槽中滑动,若,则的度数是( )
A.60°B.65°C.75°D.80°
6.若,,则以为根的一元二次方程是( )
A.B.
C.D.
7.以半径为2的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )
A.不能构成三角形B.这个三角形是等腰三角形
C.这个三角形是直角三角形D.这个三角形是钝角三角形
8.等腰直角△ABC内有一点P,满足∠PAB=∠PBC=∠PCA,若∠BAC=90°,AP=1.则CP的长等于( )
A.B.2C.2D.3
9.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有( )
A.24B.36C.40D.90
10.如图所示,几何体的左视图为( )
A.B.C.D.
11.下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
12.有一副三角板,含45°的三角板的斜边与含30°的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,则AF的长为( )
A.2B.2﹣2C.4﹣2D.2﹣
二、填空题(每题4分,共24分)
13.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于_____(结果保留根号).
14.如果,那么_________.
15.如图,的中线、交于点,点在边上,,那么的值是__________.
16.如图,直角三角形的直角顶点在坐标原点,,若点在反比例函数的图象上,则经过点的反比例函数解析式为___;
17.如图是圆心角为,半径为的扇形,其周长为_____________.
18.已知二次函数的图象与轴的一个交点为,则它与轴的另一个交点的坐标是__________.
三、解答题(共78分)
19.(8分)在平面直角坐标系中,已知抛物线.
(1)求抛物线的对称轴;
(2)当时,设抛物线与轴交于两点(点在点左侧),顶点为,若为等边三角形,求的值;
(3)过(其中)且垂直轴的直线与抛物线交于两点.若对于满足条件的任意值,线段的长都不小于1,结合函数图象,直接写出的取值范围.
20.(8分)文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“ 亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:
(1)请直接写出_______,_______,第3组人数在扇形统计图中所对应的圆心角是_______度.
(2)请补全上面的频数分布直方图.
(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?
21.(8分)如图为正方形网格,每个小正方形的边长均为1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.
(1)在图中画一个以为一边的菱形,且菱形的面积等于1.
(2)在图中画一个以为对角线的正方形,并直接写出正方形的面积.
22.(10分)为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用天.
(1)求甲、乙两工程队每天能完成塑胶改造的面积;
(2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求与的函数解析式;
(3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.
23.(10分)已知:如图,正方形为边上一点,绕点逆时针旋转后得到.
如果,求的度数;
与的位置关系如何?说明理由.
24.(10分)如图,在□中, 是上一点,且,与的延长线交点.
(1)求证:△∽△;
(2)若△的面积为1,求□ 的面积.
25.(12分)如图1,点A是x轴正半轴上的动点,点B的坐标为(0,4),M是线段AB的中点.将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点.连结AC,BC,CD,设点A的横坐标为t,
(1)当t=2时,求CF的长;
(2)①当t为何值时,点C落在线段CD上;
②设△BCE的面积为S,求S与t之间的函数关系式;
(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到,再将A,B,为顶点的四边形沿剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出符合上述条件的点坐标,
26.(12分)材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.
图1
图2
材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10 m,间距AB为32 m,桥面AB水平,主索最低点为点P,点P距离桥面为2 m;
图3
为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如下图:
甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;
乙同学:以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;
丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.
(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;
(2)距离点P水平距离为4 m和8 m处的吊索共四条需要更换,则四根吊索总长度为多少米?
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、B
4、A
5、D
6、B
7、C
8、B
9、D
10、A
11、A
12、D
二、填空题(每题4分,共24分)
13、
14、
15、
16、
17、
18、
三、解答题(共78分)
19、 (1)x=2;(2);(3)或.
20、(1)25,20,126;(2)见解析;(2)60万人.
21、(1)图见解析;(2)图见解析,2.
22、 (1)甲、乙工程队每天能完成绿化的面积分别是、;(2);(3)安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.
23、(1)20°,(2),详见解析
24、(1)证明见解析;(2)24
25、(2)CF=2;(2)①;②;(3)点的坐标为:(22,2),(8,2),(2,2).
26、(1)甲,C(16,0),主索抛物线的表达式为;(2)四根吊索的总长度为13m;
相关试卷
这是一份2023-2024学年吉林省长春市长春汽车经济技术开发区九上数学期末达标检测试题含答案,共7页。试卷主要包含了不等式组的整数解有,cs60°的值等于,化简的结果是等内容,欢迎下载使用。
这是一份2023-2024学年吉林省长春市汽车经济技术开发区九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了下列二次函数中,顶点坐标为,若,相似比为1等内容,欢迎下载使用。
这是一份吉林省长春汽车经济技术开发区2023-2024学年九年级数学第一学期期末复习检测试题含答案,共8页。试卷主要包含了已知点A,如图,AB是⊙O的弦等内容,欢迎下载使用。