2023-2024学年福建省厦门双十中学数学九上期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为
A.9B.6C.4D.3
2.抛物线经过平移得到抛物线,平移过程正确的是( )
A.先向下平移个单位,再向左平移个单位
B.先向上平移个单位,再向右平移个单位
C.先向下平移个单位,再向右平移个单位
D.先向上平移个单位,再向左平移个单位.
3.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是( )
A.6B.5C.4D.3
4.如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F别是AM、MC的中点,则EF的长随着M点的运动( )
A.不变B.变长C.变短D.先变短再变长
5.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为( )
A.a﹣b=1B.a﹣b=﹣1C.a﹣b=0D.a﹣b=±1
6.服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是( )
A.平均数B.中位数C.方差D.众数
7.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为( )
A.B.C.4D.6
8.如图,矩形草坪ABCD中,AD=10 m,AB=m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B,D.若便道的宽为1 m,则这条便道的面积大约是( )(精确到0.1 m2)
A.9.5 m2B.10.0 m2C.10.5 m2D.11.0 m2
9.如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积( )
A.逐渐变大B.逐渐变小C.等于定值16D.等于定值24
10.某小组作“用频率估计概率的实验”时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是( )
A.掷一个质地均匀的正六面体骰子,向上的面点数是4
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红色
D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
11.某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是( )
A.抽一次不可能抽到一等奖
B.抽次也可能没有抽到一等奖
C.抽次奖必有一次抽到一等奖
D.抽了次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖
12.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=28º,则∠P的度数是( )
A.50ºB.58º
C.56ºD.55º
二、填空题(每题4分,共24分)
13.九年级学生在毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了2256段毕业感言,如果该班有x名同学,根据题意列出方程为____.
14.如图,在中,在边上,,是的中点,连接并延长交于,则______.
15.一个小组新年互送贺卡,若全组共送贺卡72张,则这个小组共______人.
16.如图,抛物线和抛物线的顶点分别为点M和点N,线段MN经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是__________,MN平移到PQ扫过的阴影部分的面积是__________.
17.如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=________.
18.如图所示,写出一个能判定的条件________.
三、解答题(共78分)
19.(8分)已知二次函数的图象和轴交于点、,与轴交于点,点是直线上方的抛物线上的动点.
(1)求直线的解析式.
(2)当是抛物线顶点时,求面积.
(3)在点运动过程中,求面积的最大值.
20.(8分)如图,在中,点,分别在,上,,,.求四边形的面积.
21.(8分)计算:cs30°•tan60°+4sin30°.
22.(10分)先化简,再求值:,其中x为方程的根.
23.(10分)如图,在△ABC中,D为BC边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC的长
24.(10分)某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个.假设每个降价x(元)时,每天获得的利润为W(元).则降价多少元时,每天获得的利润最大?
25.(12分)如图,已知二次函数 的图像过点A(-4,3),B(4,4).
(1)求抛物线二次函数的解析式.
(2)求一次函数直线AB的解析式.
(3)看图直接写出一次函数直线AB的函数值大于二次函数的函数值的x的取值范围.
(4)求证:△ACB是直角三角形.
26.(12分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°, 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、B
4、A
5、B
6、D
7、B
8、C
9、C
10、A
11、B
12、C
二、填空题(每题4分,共24分)
13、(x﹣1)x=2256
14、
15、1
16、 (1,5) 16
17、65°
18、(答案不唯一)
三、解答题(共78分)
19、 (1);(2)3;(3)面积的最大值为.
20、21.
21、.
22、1
23、
24、降价2.5元时,每天获得的利润最大.
25、(1);(2);(3)﹣4﹤x﹤4;(4)见解析
26、(20+17)cm.
2023-2024学年福建省厦门市思明区双十中学数学九上期末统考模拟试题含答案: 这是一份2023-2024学年福建省厦门市思明区双十中学数学九上期末统考模拟试题含答案,共9页。试卷主要包含了抛物线的对称轴是,已知,则的值是等内容,欢迎下载使用。
2023-2024学年福建厦门双十中学九上数学期末调研试题含答案: 这是一份2023-2024学年福建厦门双十中学九上数学期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,用配方法解方程时,应将其变形为等内容,欢迎下载使用。
2023-2024学年福建省厦门市思明区大同中学九上数学期末调研模拟试题含答案: 这是一份2023-2024学年福建省厦门市思明区大同中学九上数学期末调研模拟试题含答案,共9页。试卷主要包含了一副三角板,下列命题是真命题的是等内容,欢迎下载使用。