2023-2024学年湖北省武汉市武汉七一中学数学九年级第一学期期末考试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.下列事件中,是随机事件的是( )
A.两条直线被第三条直线所截,同位角相等
B.任意一个四边形的外角和等于360°
C.早上太阳从西方升起
D.平行四边形是中心对称图形
2.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃
C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D.掷一个质地均匀的正六面体骰子,向上的面点数是偶数
3.如图,在Rt△ABC中,∠ACB=90°,若,BC=2,则sin∠A的值为( )
A.B.C.D.
4.已知分式的值为0,则的值是( ).
A.B.C.D.
5.△ABC在网络中的位置如图所示,则cs∠ACB的值为( )
A.B.C.D.
6.下列事件中,是必然事件的是( )
A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球
B.抛掷一枚普通正方体骰子,所得点数小于7
C.抛掷一枚一元硬币,正面朝上
D.从一副没有大小王的扑克牌中抽出一张,恰好是方块
7.我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C处测得山顶部A的仰角为30度,在爬山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为( )(图中所有点在同一平面内≈1.41,≈1.73)
A.60分钟B.70分钟C.80分钟D.90分钟
8.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是( )
A.B.C.D.
9.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、2、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是( )
A.B.
C.D.
10.下列说法不正确的是( )
A.一组同旁内角相等的平行四边形是矩形
B.一组邻边相等的菱形是正方形
C.有三个角是直角的四边形是矩形
D.对角线相等的菱形是正方形
11.下列关系式中,属于二次函数的是(x是自变量)
A.y=x2B.y=C.y=D.y=ax2+bx+c
12.下面的图形中,是轴对称图形但不是中心对称图形的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.方程的根是_____.
14.如果将抛物线平移,顶点移到点P(3,-2)的位置,那么所得新抛物线的表达式为___________.
15.某商场购进一批单价为16元的日用品,若按每件20元的价格销售,每月能卖出360件,若按每件25元的价格销售,每月能卖210件,假定每月销售件数y(件)与每件的销售价格x(元/件)之间满足一次函数.在商品不积压且不考虑其他因素的条件下,销售价格定为______元时,才能使每月的毛利润w最大,每月的最大毛利润是为_______元.
16.如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:
第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);
第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;
第三步:如图③,将MN左侧纸片绕G点按顺时针旋转180º,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180º,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片(裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值为___cm.
17.若函数是二次函数,则的值为__________.
18.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形,点是母线的中点,一只蚂蚁从点出发沿圆锥的表面爬行到点处,则这只蚂蚁爬行的最短距离是_______cm.
三、解答题(共78分)
19.(8分)已知抛物线经过点(1,0),(0,3).
(1)求该抛物线的函数表达式;
(2)将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.
20.(8分)(阅读材料)某校九年级数学课外兴趣探究小组在学习完《第二十八章锐角三角函数》后,利用所学知识进行深度探究,得到以下正确的等量关系式:
,
,
,,
(理解应用)请你利用以上信息求下列各式的值:(1);(2)
(拓展应用)(3)为了求出海岛上的山峰的高度,在处和处树立标杆和,标杆的高都是3丈,两处相隔1000步(1步等于6尺),并且和在同一平面内,在标杆的顶端处测得山峰顶端的仰角75°,在标杆的顶端处测得山峰顶端的仰角30°,山峰的高度即的长是多少步?(结果保留整数)(参考数据:)
21.(8分)已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).
(1)分别求出这两个函数的解析式;
(2)当x取什么范围时,反比例函数值大于0;
(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;
(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.
22.(10分)如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.
(1)如图(1),当t为何值时,△BPQ的面积为4cm2?
(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?
(3)如图(2),在运动过程中的某一时刻,反比例函数y=的图象恰好同时经过P、Q两点,求这个反比例函数的解析式.
23.(10分)计算:(1);
(2)解方程:.
24.(10分)初三(1)班要从2男2女共4名同学中选人做晨会的升旗手.
(1)若从这4人中随机选1人,则所选的同学性别为男生的概率是 .
(2)若从这4人中随机选2人,求这2名同学性别相同的概率.
25.(12分)已知正方形ABCD的边长为2,中心为M,⊙O的半径为r,圆心O在射线BD上运动,⊙O与边CD仅有一个公共点E.
(1)如图1,若圆心O在线段MD上,点M在⊙O上,OM=DE,判断直线AD与⊙O的位置关系,并说明理由;
(2)如图2,⊙O与边AD交于点F,连接MF,过点M作MF的垂线与边CD交于点G,若,设点O与点M之间的距离为,EG=,当时,求的函数解析式.
26.(12分)如图,AB为⊙O的直径,弦AC的长为8cm.
(1)尺规作图:过圆心O作弦AC的垂线DE,交弦AC于点D,交优弧于点E;(保留作图痕迹,不要求写作法);
(2)若DE的长为8cm,求直径AB的长.
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、C
4、D
5、B
6、B
7、C
8、B
9、D
10、B
11、A
12、D
二、填空题(每题4分,共24分)
13、0和-4.
14、
15、24 1
16、
17、-1
18、2
三、解答题(共78分)
19、(1);(2)将抛物线向左平移个单位,向上平移个单位,解析式变为.
20、(1);(2);(3)山峰的高度即的长大约是719步
21、(1)y=,y=2x﹣3;(2)x>1;(3)x<﹣1.5或1<x<2;(4)点P′在直线上.
22、(1)t=2s时,△PBQ的面积为1;(2)t为s或s时,以B、P、Q为顶点的三角形与△ABC相似;(3)y=
23、(1)6;(2)x 1=1,x 2=2
24、(1);(2)P(这2名同学性别相同) =.
25、(1)相切,证明详见解析;(2).
26、(1)见解析;(2)10cm.
湖北省武汉市七一中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案: 这是一份湖北省武汉市七一中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案,共8页。试卷主要包含了如图,在中,若,则的长是等内容,欢迎下载使用。
2023-2024学年湖北省武汉市江岸区七一华源中学数学九年级第一学期期末联考试题含答案: 这是一份2023-2024学年湖北省武汉市江岸区七一华源中学数学九年级第一学期期末联考试题含答案,共9页。试卷主要包含了答题时请按要求用笔,在中,,,,那么的值等于等内容,欢迎下载使用。
2023-2024学年湖北省武汉市七一华源中学数学八年级第一学期期末综合测试模拟试题含答案: 这是一份2023-2024学年湖北省武汉市七一华源中学数学八年级第一学期期末综合测试模拟试题含答案,共6页。试卷主要包含了化简,其结果是等内容,欢迎下载使用。