2023-2024学年海南省海口市海口四中学、海口十四中学九年级数学第一学期期末教学质量检测模拟试题含答案
展开
这是一份2023-2024学年海南省海口市海口四中学、海口十四中学九年级数学第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是,已知=3,则代数式的值是,模型结论等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.从 1 到 9这9个自然数中任取一个,是偶数的概率是( )
A.B.C.D.
2.一同学将方程化成了的形式,则m、n的值应为( )
A.m=1.n=7B.m=﹣1,n=7C.m=﹣1,n=1D.m=1,n=﹣7
3.如图,线段与相交于点,连接,且,要使,应添加一个条件,不能证明的是( )
A.B.C.D.
4.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,同一时刻测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米.则树高为( )
A.3.0mB.4.0mC.5.0mD.6.0m
5.下列运算中,正确的是( )
A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1D.(a﹣b)2=a2﹣b2
6.反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k可以为( )
A.0B.1C.2D.3
7.已知=3,则代数式的值是( )
A.B.C.D.
8.模型结论:如图①,正内接于,点是劣弧上一点,可推出结论.
应用迁移:如图②,在中,,,,是内一点,则点到三个顶点的距离和的最小值为( )
A.B.5C.D.
9.一元二次方程x2+4x=5配方后可变形为( )
A.(x+2)2=5B.(x+2)2=9C.(x﹣2)2=9D.(x﹣2)2=21
10.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BAD的度数是( )
A.60°B.80°C.100°D.120°
11.下列计算正确的是( )
A.B.C.÷D.
12.某学校要种植一块面积为100 m2的长方形草坪,要求两边长均不小于5 m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限内的点C分别在双曲线和的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:
①阴影部分的面积为;
②若B点坐标为(0,6),A点坐标为(2,2),则;
③当∠AOC=时,;
④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是 ____________(填写正确结论的序号).
14.圆内接正六边形的边长为6,则该正六边形的边心距为_____.
15.如图是拦水坝的横断面,斜坡的高度为米,斜面的坡比为,则斜坡的长为________米.(保留根号)
16.如图,在正方形ABCD中,AB=4,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为_________
17.如图,在矩形中对角线与相交于点,,垂足为点,且,则的长为___________.
18.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.
三、解答题(共78分)
19.(8分)在正方形和等腰直角中,,是的中点,连接、.
(1)如图1,当点在边上时,延长交于点.求证:;
(2)如图2,当点在的延长线上时,(1)中的结论是否成立?请证明你的结论;
(3)如图3,若四边形为菱形,且,为等边三角形,点在的延长线上时,线段、又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.
20.(8分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与反比例函数在第一象限内的图象交于点,且点的横坐标为.过点作轴交反比例函数的图象于点,连接.
(1)求反比例函数的表达式.
(2)求的面积.
21.(8分)如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,求点E与点C之间的距离.
22.(10分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.
(1)求证:四边形AECF是矩形;
(2)若AB=6,求菱形的面积.
23.(10分)假期期间,甲、乙两位同学到某影城看电影,影城有《我和我的祖国》(记为)、《中国机长》(记为)、《攀登者》(记为)三部电影,甲、乙两位同学分别从中任选一部观看,每部被选中的可能性相同.用树状图或列表法求甲、乙两位同学选择同一部电影的概率.
24.(10分)某食品商店将甲、乙、丙3种糖果的质量按配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/、20元/、27元/.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.
25.(12分)(1)问题发现:如图1,在等腰直角三角形中,,将边绕点顺时针旋转90°得到线段,连接,则的面积为__________;(请用含的式子表示的面积;提示:过点作边上的高)
(2)类比探究:如图2,在一般的中,,将边绕点顺时针旋转90°得到线段,连接.(1)中的结论是否成立,若成立,请说明理由.
(3)拓展应用:如图3,在等腰三角形中,,将边绕点顺时针旋转90°得到线段,连接.试直接用含的式子表示的面积.(不写探究过程)
26.(12分)如图,在平面直角坐标系中,的三个顶点分别为.
(1)点关于原点对称点分别为点,,写出点,的坐标;
(2)作出关于原点对称的图形;
(3)线段与线段的数量关系是__________,线段与线段的关系是__________.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、D
4、B
5、B
6、A
7、D
8、D
9、B
10、B
11、C
12、C
二、填空题(每题4分,共24分)
13、②④
14、3
15、
16、2
17、
18、
三、解答题(共78分)
19、(1)证明见解析;(2)成立,证明见解析;(3),图详见解析.
20、(1);(2)
21、.
22、(1)证明见解析;(2)24
23、,见解析
24、这样定价不合理,理由见解析
25、(1);(2)成立,理由见解析;(3)
26、(1)点,,的坐标分别为,,;(2)作图见解析;(3),
相关试卷
这是一份2023-2024学年海南省海口市海口四中学、海口十四中学数学九上期末复习检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年海南省海口市丰南中学九年级数学第一学期期末联考模拟试题含答案,共8页。试卷主要包含了下列事件不属于随机事件的是,正五边形的每个内角度数为,的相反数是等内容,欢迎下载使用。
这是一份2023-2024学年海南省海口市海口四中学、海口十四中学数学八上期末学业质量监测试题含答案,共8页。试卷主要包含了点关于轴的对称点的坐标是,化简的结果是,如图,,,则等于等内容,欢迎下载使用。