2023-2024学年江苏省新吴区数学九年级第一学期期末质量跟踪监视模拟试题含答案
展开
这是一份2023-2024学年江苏省新吴区数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列根式中,是最简二次根式的是,下列成语表示随机事件的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.若点,,在反比例函数(为常数)的图象上,则,,的大小关系是( )
A.B.C.D.
2.一元二次方程的根是
A.B.C.,D.,
3.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是
A.当x=3时,EC<EMB.当y=9时,EC>EM
C.当x增大时,EC·CF的值增大.D.当y增大时,BE·DF的值不变.
4.下列根式中,是最简二次根式的是( )
A.B.C.D.
5.式子在实数范围内有意义,则x的取值范围是( )
A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣2
6.在Rt△ABC中,∠C = 90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中成立的是( )
A.B.C.D.
7.如图,在中,为上一点,连接、,且、交于点,,则等于( )
A.B.C.D.
8.下列成语表示随机事件的是( )
A.水中捞月 B.水滴石穿 C.瓮中捉鳖 D.守株待兔
9.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为( )
A.B.C.D.
10.二次函数y=ax2+bx+c的部分对应值如下表
利用二次函数的图象可知,当函数值y>0时,x的取值范围是( )
A.0<x<2B.x<0或x>2C.﹣1<x<3D.x<﹣1或x>3
11.如图,的外切正六边形的边长为2,则图中阴影部分的面积为( )
A.B.C.D.
12.如图,在△ABC中,点D是BC的中点,点E是AC的中点,若DE=3,则AB等于( )
A.4B.5C.5.5D.6
二、填空题(每题4分,共24分)
13.已知三角形的两边分别是3和4,第三边的数值是方程x2﹣9x+14=0的根,则这个三角形的周长为_____.
14.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.
15.若关于 x 的一元二次方程2x2-x+m=0 有两个相等的实数根,则 m 的值为__________.
16.已知一元二次方程x2-10x+21=0的两个根恰好分别是等腰三角形ABC的底边长和腰长,则△ABC的周长为_________.
17.如图,已知点D,E是半圆O上的三等分点,C是弧DE上的一个动点,连结AC和BC,点I是△ABC的内心,若⊙O的半径为3,当点C从点D运动到点E时,点I随之运动形成的路径长是_____.
18.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.
三、解答题(共78分)
19.(8分)二次函数图象是抛物线,抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹.其中定点叫抛物线的焦点,定直线叫抛物线的准线.
①抛物线()的焦点为,例如,抛物线的焦点是;抛物线的焦点是___________;
②将抛物线()向右平移个单位、再向上平移个单位(,),可得抛物线;因此抛物线的焦点是.例如,抛物线的焦点是;抛物线的焦点是_____________________.根据以上材料解决下列问题:
(1)完成题中的填空;
(2)已知二次函数的解析式为;
①求其图象的焦点的坐标;
②求过点且与轴平行的直线与二次函数图象交点的坐标.
20.(8分)在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.
(1)求抛物线和一次函数的解析式;
(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;
(3)若点为轴上任意一点,在(2)的结论下,求的最小值.
21.(8分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.判断线段DE、FG的位置关系,并说明理由.
22.(10分)岚山区地处黄海之滨,渔业资源丰富,海产品深受消费者喜爱.某海产品批发超市对进货价为40元/千克的某品牌小黄鱼的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式;
(2)若不考虑其它因素,则销售总利润=每千克的利润×总销量,那么当销售价格定为多少时,该品牌小黄鱼每天的销售利润最大?最大利润是多少?
23.(10分)如图,∠1=∠3,∠B=∠D,AB=DE=5,BC=1.
(1)请证明△ABC∽△ADE.
(2)求AD的长.
24.(10分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.
(1)试求出纸箱中蓝色球的个数;
(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.
25.(12分)如图,在矩形ABCD中,AB=10,动点E、F分别在边AB、AD上,且AF=AE.将△AEF绕点E顺时针旋转10°得到△A'EF',设AE=x,△A'EF'与矩形ABCD重叠部分面积为S,S的最大值为1.
(1)求AD的长;
(2)求S关于x的函数解析式,并写出自变量x的取值范围.
26.(12分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:
(1)求与之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、D
4、D
5、B
6、B
7、A
8、D
9、D
10、C
11、A
12、D
二、填空题(每题4分,共24分)
13、1.
14、k>2
15、
16、1
17、π.
18、
三、解答题(共78分)
19、(1)①;②;(2)①;②和
20、 (1);;(2)的面积最大值是,此时点坐标为;(2)的最小值是2.
21、见解析
22、(1)y=-2x+140;(2)当该种小黄鱼销售价定为55元/千克时,每天的销售利润有最大值1元
23、(1)见解析;(2)
24、(1)50;(2)2
25、(1);(2)
26、(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.
x
﹣3
﹣2
﹣1
0
1
2
y
﹣12
﹣5
0
3
4
3
相关试卷
这是一份2023-2024学年江苏省金坛区数学九年级第一学期期末质量跟踪监视试题含答案,共7页。试卷主要包含了答题时请按要求用笔,若,相似比为1等内容,欢迎下载使用。
这是一份2023-2024学年江苏省扬州市大丰区九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如图,点A是反比例函数y=等内容,欢迎下载使用。
这是一份2023-2024学年江西省高安市吴有训实验学校九上数学期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列各式属于最简二次根式的是等内容,欢迎下载使用。