2023-2024学年广西北海市数学九年级第一学期期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.二次函数 y=(x-1)2 -5 的最小值是( )
A.1B.-1C.5D.-5
2.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是( )
A.B.C.D.
3.下列美丽的壮锦图案是中心对称图形的是( )
A.B.C.D.
4.二位同学在研究函数(为实数,且)时,甲发现当 0<<1时,函数图像的顶点在第四象限;乙发现方程必有两个不相等的实数根,则( )
A.甲、乙的结论都错误B.甲的结论正确,乙的结论错误
C.甲、乙的结论都正确D.甲的结论错误,乙的结论正确
5.若点(2, 3)在反比例函数y=的图象上,那么下列各点在此图象上的是( )
A.(-2,3)B.(1,5)C.(1, 6)D.(1, -6)
6.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:
给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为( )
A.0B.1C.1D.3
7.下列图形中,是中心对称图形但不是轴对称图形的是( )
A.B.C.D.
8.如图,在菱形中,,,,则的值是( )
A.B.2C.D.
9.已知下列命题:①等弧所对的圆心角相等;②90°的圆周角所对的弦是直径;③关于x的一元二次方程有两个不相等的实数根,则ac< 0;④若二次函数y= 的图象上有两点(-1,y1)、(2,y2),则>;其中真命题的个数是( )
A.1个B.2个C.3个D.4个
10.已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在( )
A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限
11.抛物线可由抛物线如何平移得到的( )
A.先向左平移3个单位,再向下平移2个单位
B.先向左平移6个单位,再向上平移7个单位
C.先向上平移2个单位,再向左平移3个单位
D.先回右平移3个单位,再向上平移2个单位
12.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是( )
A.30°B.40°C.50°D.60°
二、填空题(每题4分,共24分)
13.点是二次函数图像上一点,则的值为__________
14.如图,把绕着点顺时针方向旋转角度(),得到,若,,三点在同一条直线上,,则的度数是___________.
15.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是_____.
16.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压是气体体积的反比例函数,其图象如图所示.当气体体积为时,气压是__________.
17.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .
18.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB= º.
三、解答题(共78分)
19.(8分)如图,的直径AB为20cm,弦,的平分线交于D,求BC,AD,BD的长.
20.(8分)综合与实践
问题情境
数学课上,李老师提出了这样一个问题:如图1,点是正方形内一点,,,.你能求出的度数吗?
(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:
思路一:将绕点逆时针旋转,得到,连接,求出的度数.
思路二:将绕点顺时针旋转,得到,连接,求出的度数.
请参考以上思路,任选一种写出完整的解答过程.
类比探究
(2)如图2,若点是正方形外一点,,,,求的度数.
拓展应用
(3)如图3,在边长为的等边三角形内有一点,,,则的面积是______.
21.(8分)如图,已知二次函数的图象与轴交于、两点(点在点的左侧),与轴交于点,且,顶点为.
(1)求二次函数的解析式;
(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;
(3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.
22.(10分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.
(1)求11、12两月份平均每月降价的百分率是多少?
(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由
23.(10分)同时抛掷3枚硬币做游戏,其中1元硬币1枚,5角硬币两枚.
(1)求3枚硬币同时正面朝上的概率.
(2)小张、小王约定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和为1.5元,则小张获得1分;若面值和为1元,则小王得1分.谁先得到10分,谁获胜,请问这个游戏是否公平?并说明理由.
24.(10分)如图,在平面直角坐标系中,的顶点坐标分别为,,.
(1)将以原点为旋转中心旋转得到,画出旋转后的.
(2)平移,使点的对应点坐标为,画出平移后的
(3)若将绕某一点旋转可得到,请直接写出旋转中心的坐标.
25.(12分)已知抛物线y=kx2+(1﹣2k)x+1﹣3k与x轴有两个不同的交点A、B.
(1)求k的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点M,并求出点M的坐标;
(3)当<k≤8时,由(2)求出的点M和点A,B构成的△ABM的面积是否有最值?若有,求出该最值及相对应的k值.
26.(12分)如图,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P,⊙P 交 CE、BD、BC 交于 F、G、H(任意两点不重合),
(1)半径 BP 的长度范围为 ;
(2)连接 BF 并延长交 CD 于 K,若 tan KFC 3 ,求 BP;
(3)连接 GH,将劣弧 HG 沿着 HG 翻折交 BD 于点 M,试探究是否为定值,若是求出该值,若不是,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、A
4、D
5、C
6、B
7、A
8、B
9、B
10、B
11、A
12、C
二、填空题(每题4分,共24分)
13、1
14、
15、
16、1
17、.
18、55
三、解答题(共78分)
19、BC=16cm,AD=BD=10cm.
20、 (1)∠APB=135°,(2)∠APB=45°;(3).
21、(1);(2);(3)存在,,.
22、(1)10%;(1)会跌破10000元/m1.
23、(1);(2)公平,见解析
24、 (1)见解析;(2)见解析;(3)旋转中心坐标为.
25、(1)且;(2)见解析,M(3,4) ;(3)△ABM的面积有最大值,
26、(1);(2)BP=1;(3)
x
…
﹣3
﹣1
﹣1
0
1
1
3
4
…
y
…
11
5
0
﹣3
﹣4
﹣3
0
5
…
广西岳池县联考2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份广西岳池县联考2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了如图,点,在双曲线上,且,已知一元二次方程,,则的值为,如图,函数y=kx+b,下列说法等内容,欢迎下载使用。
广西河池市宜州区2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份广西河池市宜州区2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案,共9页。
广西河池市2023-2024学年数学九上期末质量跟踪监视试题含答案: 这是一份广西河池市2023-2024学年数学九上期末质量跟踪监视试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,在中,,,等内容,欢迎下载使用。

