2023-2024学年山东省莱西市九年级数学第一学期期末监测模拟试题含答案
展开
这是一份2023-2024学年山东省莱西市九年级数学第一学期期末监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,若关于x的一元二次方程等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )
A.B.C.D.4
2.如图,点在的边上,以原点为位似中心,在第一象限内将缩小到原来的,得到,点在上的对应点的的坐标为( )
A.B.C.D.
3.下列图形中,是中心对称图形但不是轴对称图形的是( )
A.B.C.D.
4.若x=5是方程的一个根,则m的值是( )
A.-5B.5C.10D.-10
5.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是( )
A.B.C.D.
6.已知二次函数的图象如图所示,下列结论:①;②;③;④.其中正确的结论是( )
A.①②B.①③C.①③④D.①②③
7.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )
A.(3,3)B.(4,3)C.(3,1)D.(4,1)
8.已知是方程x2﹣3x+c=0的一个根,则c的值是( )
A.﹣6B.6C.D.2
9.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )
A.k>B.k≥C.k>且k≠1D.k≥且k≠1
10.反比例函数与二次函数在同一直角坐标系的图像可能是( )
A.B.C.D.
11.如图,双曲线与直线相交于、两点,点坐标为,则点坐标为( )
A.B.C.D.
12.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.
14.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.
15.如图,在中,,,点在边上,,.点是线段上一动点,当半径为的与的一边相切时,的长为____________.
16.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.
17.如图,在ABCD中,点E是AD边上一点,AE:ED=1:2,连接AC、BE交于点F.若S△AEF=1,则S四边形CDEF=_______.
18.如图,抛物线与直线交于A(-1,P),B(3,q)两点,则不等式的解集是_____.
三、解答题(共78分)
19.(8分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
20.(8分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份).
(1)甲顾客消费80元,是否可获得转动转盘的机会?
(2)乙顾客消费150元,获得打折待遇的概率是多少?
(3)他获得九折,八折,七折,五折待遇的概率分别是多少?
21.(8分)先化简,再求值:,其中a=3,b=﹣1.
22.(10分)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调查结果绘制成如下不完整的统计表和统计图.
学生选修课程统计表
根据以上信息,解答下列问题:
(1) , .
(2)求出的值并补全条形统计图.
(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.
(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.
23.(10分)解方程:(x+2)(x-5)=1.
24.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
25.(12分)某水果商场经销一种高档水果,原价每千克50元.
(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?
26.(12分)已知,二次函数的图象,如图所示,解决下列问题:
(1)关于的一元二次方程的解为;
(2)求出抛物线的解析式;
(3)为何值时.
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、B
4、D
5、C
6、C
7、A
8、B
9、C
10、C
11、B
12、C
二、填空题(每题4分,共24分)
13、55.
14、0.4m
15、或或
16、-2或1.
17、11
18、或.
三、解答题(共78分)
19、 (1)60;(2)四边形ACFD是菱形.理由见解析.
20、(1)因为规定顾客消费100元以上才能获得一次转动转盘的机会,所以甲顾客消费80元,不能获得转动转盘的机会;(2)(3)P(九折); P(八折)= = P(七折)= P(五折) .
21、,.
22、(1)50、28;(2),补全图形见解析;(3)估计选修“声乐”课程的学生有420人;(4)所抽取的2人恰好来自同一个班级的概率为.
23、x1=7,x2=-2
24、(1)y=﹣20x+1600;
(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)超市每天至少销售粽子440盒.
25、(1)20%;(2)每千克应涨价5元.
26、(1)-1或2;(2)抛物线解析式为y=-x2+2x+2;(2)x>2或x<-1.
课程
人数
所占百分比
声乐
14
舞蹈
8
书法
16
摄影
合计
相关试卷
这是一份山东省枣庄市2023-2024学年九年级数学第一学期期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份山东省德州地区2023-2024学年九年级数学第一学期期末监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,方程的根是,下列函数属于二次函数的是等内容,欢迎下载使用。
这是一份山东省莘县联考2023-2024学年数学九年级第一学期期末监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线的对称轴为,函数中,自变量的取值范围是,点P在双曲线上,则k的值为,若,则的值为等内容,欢迎下载使用。