2023-2024学年四川省宜宾市数学九年级第一学期期末教学质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是( )
A.y=﹣3(x﹣1)2﹣2B.y=﹣3(x﹣1)2+2
C.y=﹣3(x+1)2﹣2D.y=﹣3(x+1)2+2
2.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A.①②③④B.①④C.②③④D.①②③
3.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为( )
A.15cmB.20cmC.25cmD.30cm
4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球,摸出白球的概率是( )
A.B.C.D.
5.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程( )
A.B.C.
D.
6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )
A.2cmB.3cmC.4cmD.1cm
7.抛物线y=(x﹣4)2﹣5的顶点坐标和开口方向分别是( )
A.(4,﹣5),开口向上B.(4,﹣5),开口向下
C.(﹣4,﹣5),开口向上D.(﹣4,﹣5),开口向下
8.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的( )
A.平均数B.频数C.中位数D.方差
9.若抛物线y=x2+ax+b与x轴两个交点间的距离为4,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=2,将此抛物线向左平移2个单位,再向上平移3个单位,得到的抛物线过点( )
A.(1,0)B.(1,8)C.(1,﹣1)D.(1,﹣6)
10.如图,在⊙O中,弦BC // OA,AC与OB相交于点M,∠C=20°,则∠MBC的度数为( ).
A.30°B.40°
C.50°D.60°
11.已知点,在双曲线上.如果,而且,则以下不等式一定成立的是( )
A.B.C.D.
12.如图,点的坐标为,点,分别在轴,轴的正半轴上运动,且,下列结论:
①
②当时四边形是正方形
③四边形的面积和周长都是定值
④连接,,则,其中正确的有( )
A.①②B.①②③C.①②④D.①②③④
二、填空题(每题4分,共24分)
13.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.
14.若式子在实数范围内有意义,则的取值范围是________.
15.闹元宵吃汤圆是我国传统习俗,正月十五小明的妈妈煮了一碗汤圆,其中有4个花生味和2个芝麻味,小明从中任意吃一个,恰好吃到花生味汤圆的概率是_____.
16.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)
17.一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率.若设平均每次降价的百分率为x,则可列方程_________.
18.二次函数,当时,y随x的增大而减小,则m的取值范围是__________.
三、解答题(共78分)
19.(8分)解方程:(x+3)2=2x+1.
20.(8分)如图,是的直径,过的中点.,垂足为.
(1)求证:直线是的切线;
(2)若,的直径为,求的长及的值.
21.(8分)某校网络学习平台开通以后,王老师在平台上创建了教育工作室和同学们交流学习.随机抽查了20天通过访问王老师工作室学习的学生人数记录,统计如下:(单位:人次)
20 20 28 15 20 25 30 20 12 13
30 25 15 20 10 10 20 17 24 26
“希望腾飞”学习小组根据以上数据绘制出频数分布表和频数分布直方图的一部分如图:
频数分布表
请根据以上信息回答下列问题:
(1)在频数分布表中,a的值为 ,b的值为 ,并将频数分布直方图补充完整;
(2)求这20天访问王老师工作室的访问人次的平均数.
22.(10分)如图,在边长为1的小正方形组成的正方形网格中,的顶点坐标分别为、、.
以原点O为位似中心,在y轴的右侧画出放大2倍后的.
设的面积为S,则______.
23.(10分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.
(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是 ;
(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.
24.(10分)在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ.
(1)当△ABD为等边三角形时,
①依题意补全图1;
②PQ的长为 ;
(2)如图2,当α=45°,且BD=时,求证:PD=PQ;
(3)设BC=t,当PD=PQ时,直接写出BD的长.(用含t的代数式表示)
25.(12分)有六张完全相同的卡片,分两组,每组三张,在组的卡片上分别画上“√,×,√”,组的卡片上分别画上“√,×,×”,如图①所示.
(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率(请用“树形图法”或“列表法”求解).
(2)若把两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图②所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.
①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?
②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.
26.(12分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).
(2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?
(3)根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、D
4、A
5、D
6、A
7、A
8、D
9、A
10、B
11、B
12、A
二、填空题(每题4分,共24分)
13、.
14、且
15、
16、大
17、
18、
三、解答题(共78分)
19、x1=﹣3,x2=﹣1.
20、(1)见解析;(2),
21、(1)7、1,直方图见解析;(2)20人次.
22、(1)如图所示见解析;(2)
23、(1);(2).
24、(1)①详见解析;②1;(1)详见解析;(3)BD=.
25、(1);(2)①;②
26、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.
分组
频数(单位:天)
10≤x<15
4
15≤x<20
3
20≤x<25
a
25≤x<30
b
30≤x<35
2
合计
20
(元)
19
20
21
30
(件)
62
60
58
40
四川省宜宾市观音片区2023-2024学年数学九年级第一学期期末达标检测试题含答案: 这是一份四川省宜宾市观音片区2023-2024学年数学九年级第一学期期末达标检测试题含答案,共8页。
四川省宜宾市第八中学2023-2024学年数学九年级第一学期期末教学质量检测试题含答案: 这是一份四川省宜宾市第八中学2023-2024学年数学九年级第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了如图所示的几何体的主视图为,在平面直角坐标系中,点P等内容,欢迎下载使用。
四川省宜宾市名校2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份四川省宜宾市名校2023-2024学年九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了矩形不具备的性质是,下列几何体的左视图为长方形的是等内容,欢迎下载使用。