贵州省剑河县2023-2024学年九年级数学第一学期期末联考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,已知等边的边长为,以为直径的圆交于点,以为圆心,为半径作圆,是上一动点,是的中点,当最大时,的长为( )
A.B.C.D.
2.二次函数y=(x+2)2-3的顶点坐标是( )
A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)
3.在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是( )
A.B.C.D.
4.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是( )
A.4个B.3个C.2个D.1个
5.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当0>x1>x2时,有y1>y2,则k的取值范围是( )
A.k≤B.k
6.二次函数y=a+bx+c的图象如图所示,则下列关系式错误的是( )
A.a<0B.b>0C.﹣4ac>0D.a+b+c<0
7.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则⊙C半径是( )
A.B.C.D.2
8.若反比例函数的图像经过点,则下列各点在该函数图像上的为( )
A.B.C.D.
9.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟.刚把两人洗完,就听到两个小家伙在床上笑.“你们笑什么?”妈妈问.“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为( )
A.B.C.D.1
10.如图,菱形的边长是,动点同时从点出发,以的速度分别沿运动,设运动时间为,四边形的面积为,则与的函数关系图象大致为( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.若点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),则(3a+b)2020=______.
12.如图,在△ABC中,AC=6,BC=10,,点D是AC边上的动点(不与点C重合),过点D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为_______________________.
13.已知反比例函数的图象的一支位于第一象限,则常数m的取值范围是___.
14.如图在Rt△OAB中∠AOB=20°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=____.
15.如图,在△ABC中,∠A=30°,∠B=45°,BC=cm,则AB的长为_____.
16.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向
上的概率是 .
17.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.
18.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_______.
三、解答题(共66分)
19.(10分)国内猪肉价格不断上涨,已知今年10月的猪肉价格比今年年初上涨了80%,李奶奶10月在某超市购买1千克猪肉花了72元钱.
(1)今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克55元的猪肉按10月价格出售,平均一天能销售出100千克,随着国家对猪肉价格的调控,超市发现猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1800元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?
20.(6分)问题呈现:
如图 1,在边长为 1 小的正方形网格中,连接格点 A、B 和 C、D,AB 和 CD 相交于点 P,求 tan ∠CPB 的值方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形,观察发现问题中∠ CPB不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 B、 E,可得 BE∥CD,则∠ABE=∠CPB,连接AE,那么∠CPB 就变换到 Rt△ABE 中.问题解决:
(1)直接写出图 1 中 tan CPB 的值为______;
(2)如图 2,在边长为 1 的正方形网格中,AB 与 CD 相交于点 P,求 cs CPB 的值.
21.(6分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;
(2)你认为这个游戏对双方公平吗?请说明理由.
22.(8分)(问题情境)
(1)古希腊著名数学家欧几里得在《几何原本》提出了射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项.射影定理是数学图形计算的重要定理.其符号语言是:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则:(1)AC²=AB·AD;(2)BC²=AB·BD;(3)CD² = AD·BD;请你证明定理中的结论(1)AC² = AB·AD.
(结论运用)
(2)如图2,正方形ABCD的边长为3,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF,
①求证:△BOF∽△BED;
②若,求OF的长.
23.(8分)根据2019年莆田市初中毕业升学体育考试内容要求,甲、乙、丙在某节体育课他们各自随机分别到篮球场A处进行篮球运球绕杆往返训练或到足球场B处进行足球运球绕杆训练,三名学生随机选择其中的一场地进行训练.
(1)用列表法或树形图表示出的所用可能出现的结果;
(2)求甲、乙、丙三名学生在同一场地进行训练的概率;
(3)求甲、乙、丙三名学生中至少有两人在B处场地进行训练的概率.
24.(8分)在等腰直角三角形中,,,点在斜边上(),作,且,连接,如图(1).
(1)求证:;
(2)延长至点,使得,与交于点.如图(2).
①求证:;
②求证:.
25.(10分)如图,已知抛物线经过点、,且与轴交于点,抛物线的顶点为,连接,点是线段上的一个动点(不与、)重合.
(1)求抛物线的解析式,并写出顶点的坐标;
(2)过点作轴于点,求面积的最大值及取得最大值时点的坐标;
(3)在(2)的条件下,若点是轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点,,,为顶点的四边形是平行四边若存在,请直接写出点的坐标:若不存在,请说明理由.
26.(10分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A,B两点,B点的坐标为(3,2),连接OA,OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.
(1)求一次函数和反比例函数的表达式;
(2)求△AOB的面积.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、D
4、B
5、D
6、D
7、B
8、C
9、A
10、C
二、填空题(每小题3分,共24分)
11、1
12、
13、m>1
14、80°.
15、
16、
17、
18、y=2(x+2)2﹣1
三、解答题(共66分)
19、(1)每千克40元(2)猪肉的售价应该下降5元
20、(1)2;(2)
21、 (1)见解析;(2)这个游戏对双方公平,理由见解析.
22、(1)见解析;(2)①见解析;②
23、(1)共有8种可能;(2);(3)
24、(1)见解析;(1)①见解析;②见解析
25、(1),D的坐标为(1,4);(2)当m=时 △BPE的面积取得最大值为,P的坐标是(,3);(3)存在,M点的坐标为;;;;;
26、 (1) y=;y=-x+6(2)
2023-2024学年贵州省铜仁松桃县联考数学九年级第一学期期末学业水平测试模拟试题含答案: 这是一份2023-2024学年贵州省铜仁松桃县联考数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中正确的是等内容,欢迎下载使用。
2023-2024学年贵州省仁怀市九年级数学第一学期期末联考模拟试题含答案: 这是一份2023-2024学年贵州省仁怀市九年级数学第一学期期末联考模拟试题含答案,共8页。试卷主要包含了已知一组数据,下列事件中,是随机事件的是等内容,欢迎下载使用。
2023-2024学年贵州省黔南州名校九上数学期末联考模拟试题含答案: 这是一份2023-2024学年贵州省黔南州名校九上数学期末联考模拟试题含答案,共8页。试卷主要包含了如图,中,,在中,=90〫,,则的值是,抛物线的对称轴是等内容,欢迎下载使用。