- 专题03 手拉手模型-2023-2024学年七年级数学下册全等三角形的七大模型全攻略(北师大版,成都专用) 试卷 1 次下载
- 专题04 一线三等角模型-2023-2024学年七年级数学下册全等三角形的七大模型全攻略(北师大版,成都专用) 试卷 0 次下载
- 专题06 对角互补模型-2023-2024学年七年级数学下册全等三角形的七大模型全攻略(北师大版,成都专用) 试卷 1 次下载
- 全等三角形的七大模型压轴题训练(一)-2023-2024学年七年级数学下册全等三角形的七大模型全攻略(北师大版,成都专用) 试卷 0 次下载
- 全等三角形的七大模型压轴题训练(二)-2023-2024学年七年级数学下册全等三角形的七大模型全攻略(北师大版,成都专用) 试卷 0 次下载
专题05 半角模型-2023-2024学年七年级数学下册全等三角形的七大模型全攻略(北师大版,成都专用)
展开例题精讲
例1.(120°与60°)问题情境
在等边△ABC的两边AB,AC上分别有两点M,N,点D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.
特例探究
如图1,当DM=DN时,
(1)∠MDB= 度;
(2)MN与BM,NC之间的数量关系为 ;
归纳证明
(3)如图2,当DM≠DN时,在NC的延长线上取点E,使CE=BM,连接DE,猜想MN与BM,NC之间的数量关系,并加以证明.
拓展应用
(4)△AMN的周长与△ABC的周长的比为 .
例2.(60°与30°)问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之间的数量关系.
方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;
小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;
问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;
(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明.
例3.(90°与45°)如图①,四边形ABCD为正方形,点E,F分别在AB与BC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).
(1)如图②,在四边形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,点E,F分别在AB与BC上,且∠EDF=60°.猜想AE,CF与EF之间的数量关系,并证明你的猜想;
(2)如图③,在四边形ABCD中,∠ADC=2α,DA=DC,∠DAB与∠BCD互补,点E,F分别在AB与BC上,且∠EDF=α,请直接写出AE,CF与EF之间的数量关系,不用证明.
【变式训练1】已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F.
(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想AE,CF,EF之间存在怎样的数量关系?请将三条线段分别填入后面横线中: + = .(不需证明)
(2)当∠MBN绕B点旋转到AE≠CF(如图2)时,上述(1)中结论是否成立?请说明理由.
(3)当∠MBN绕B点旋转到AE≠CF(如图3)时,上述(1)中结论是否成立?若不成立,线段AE,CF,EF又有怎样的数量关系?请直接写出你的猜想,不需证明.
【变式训练2】如图,梯形ABCD中,AD∥BC,AB = BC = DC,点E、F分别在AD、AB上,且.
(1)求证:;
(2)连结AC,若,求的度数.
【变式训练3】问题背景:“半角模型”问题.如图1,在四边形中,,,,点E,F分别是上的点,且,连接,探究线段之间的数量关系.
(1)探究发现:小明同学的方法是延长到点G.使.连结,先证明,再证明,从而得出结论:_____________;
(2)拓展延伸:如图2,在四边形中,,,E、F分别是边上的点,且,请问(1)中的结论是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由.
(3)尝试应用:如图3,在四边形中,,,E、F分别是边延长线上的点,且,请探究线段具有怎样的数量关系,并证明.
【变式训练4】综合与实践
(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为 .
(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系为 .
课后训练
1.如图,在四边形中,,,分别是,上的点,连接,,.
(1)如图①,,,.求证:;
(2)如图②,,当周长最小时,求的度数;
(3)如图③,若四边形为正方形,点、分别在边、上,且,若,,请求出线段的长度.
2.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.
小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是 (直接写结论,不需证明);
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;
(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.
3.已知:正方形中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.
当绕点旋转到时(如图1),易证.
(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明.
(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想.
4.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;
(2)如图2在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD, (1)中的结论是否仍然成立?不用证明.
(3)如图3在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD, (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.
5.如图,,,,,.
(1)求的度数;
(2)以E为圆心,以长为半径作弧;以F为圆心,以长为半径作弧,两弧交于点G,试探索的形状?是锐角三形,直角三角形还是钝角三角形?请说明理由.
专题05 半角模型-2023-2024学年七年级数学下册全等三角形高分突破(北师大版,成都专用): 这是一份专题05 半角模型-2023-2024学年七年级数学下册全等三角形高分突破(北师大版,成都专用),文件包含专题05半角模型原卷版docx、专题05半角模型解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
专题06 对角互补模型-2023-2024学年七年级数学下册全等三角形的七大模型全攻略(北师大版,成都专用): 这是一份专题06 对角互补模型-2023-2024学年七年级数学下册全等三角形的七大模型全攻略(北师大版,成都专用),文件包含专题06对角互补模型原卷版docx、专题06对角互补模型解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
专题03 手拉手模型-2023-2024学年七年级数学下册全等三角形的七大模型全攻略(北师大版,成都专用): 这是一份专题03 手拉手模型-2023-2024学年七年级数学下册全等三角形的七大模型全攻略(北师大版,成都专用),文件包含专题03手拉手模型原卷版docx、专题03手拉手模型解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。