河北省石家庄高邑县联考2023-2024学年数学九上期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.二次函数下列说法正确的是( )
A.开口向上B.对称轴为直线
C.顶点坐标为D.当时,随的增大而增大
2.已知反比例函数,下列结论;①图象必经过点;②图象分布在第二,四象限;③在每一个象限内,y随x的增大而增大.其中正确的结论有( )个.
A.3B.2C.1D.0
3.二次函数(是常数,)的自变量与函数值的部分对应值如下表:
且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是( )
A.0B.1C.2D.3
4.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是( )
A.①④B.①②C.②③④D.②③
5.如图,的半径为5,的内接于,若,则的值为( )
A.B.C.D.
6.如图,△ABC中,∠C=90°,∠B=30°,AC=,D、E分别在边AC、BC上,CD=1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为( )
A.2B.3C.2D.3
7.为了估计湖里有多少条鱼,小华从湖里捕上条并做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得条,发现其中带标记的鱼条,通过这种调查方式,小华可以估计湖里有鱼( )
A.条B.条C.条D.条
8.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为
A.B.C.D.
9.若关于x的一元二次方程的两个实数根分别为,那么抛物线的对称轴为直线( )
A.B.C.D.
10.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在A的下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为
A.3B.C.4D.
二、填空题(每小题3分,共24分)
11.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外其它都相同,任意摸出一个球,摸到黑球的概率是__________.
12.如图,点D、E分别是线段AB、AC上一点∠AED=∠B,若AB=8,BC=7,AE=5则,则DE=_____.
13.如图,已知⊙P的半径为4,圆心P在抛物线y=x2﹣2x﹣3上运动,当⊙P与x轴相切时,则圆心P的坐标为_____.
14.如图,⊙O是正方形 ABCD的外接圆,点 P 在⊙O上,则∠APB等于 .
15.如图,在半径为5的⊙中,弦,是弦所对的优弧上的动点,连接,过点作的垂线交射线于点,当是以为腰的等腰三角形时,线段的长为_____.
16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.
17.如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是 .
18.方程(x+1)(x﹣2)=5化成一般形式是_____.
三、解答题(共66分)
19.(10分)如图,已知抛物线与轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,直线经过点C,与轴交于点D.
(1)求该抛物线的函数关系式;
(2)点P是(1)中的抛物线上的一个动点,设点P的横坐标为t(0<t<3).
①求△PCD的面积的最大值;
②是否存在点P,使得△PCD是以CD为直角边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由.
20.(6分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.
小丽;如果以每千克10元的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以每千克13元的价格销售,那么每天可获取利润750元.
(1)已知该水果每天的销售量y(千克)与销售单价x(元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系,并求出这个函数关系式;
(2)设该超市销售这种水果每天获取的利润为W(元),求W(元)与x(元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?
21.(6分)将如图所示的牌面数字1、2、3、4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是奇数的概率是 ;
(2)从中随机抽出两张牌,两张牌牌面数字的和是6的概率是 ;
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用树状图或列表的方法求组成的两位数恰好是3的倍的概率.
22.(8分)解一元二次方程:x2﹣5x+6=1.
23.(8分)已知抛物线y=x2+bx+c的图像过A(﹣1,0)、B(3,0)两点.求抛物线的解析式和顶点坐标.
24.(8分)已知在平面直角坐标中,点A(m,n)在第一象限内,AB⊥OA且AB=OA,反比例函数y=的图象经过点A,
(1)当点B的坐标为(4,0)时(如图1),求这个反比例函数的解析式;
(2)当点B在反比例函数y=的图象上,且在点A的右侧时(如图2),用含字母m,n的代数式表示点B的坐标;
(3)在第(2)小题的条件下,求的值.
25.(10分)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?
26.(10分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.
(1)随机掷一次骰子,则棋子跳动到点C处的概率是
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、C
4、D
5、C
6、B
7、B
8、B
9、B
10、B
二、填空题(每小题3分,共24分)
11、
12、
13、(1+2,4),(1﹣2,4),(1,﹣4)
14、45°
15、8或
16、
17、15°
18、x2﹣x﹣7=1.
三、解答题(共66分)
19、(1);(2)①3;②或
20、(1)y=﹣50x+800(x>0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.
21、(1);(2);(3),.
22、x1=2,x2=2
23、y=x2-2x-3,顶点坐标为(1,-4).
24、(1)y=;(2)B(m+n,n﹣m);(3)
25、渔船没有进入养殖场的危险.
26、(1);(2)棋子最终跳动到点C处的概率为.
…
0
1
2
…
…
…
2023-2024学年河北省石家庄高邑县联考数学九上期末达标检测模拟试题含答案: 这是一份2023-2024学年河北省石家庄高邑县联考数学九上期末达标检测模拟试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,下列式子中,为最简二次根式的是,下列算式正确的是等内容,欢迎下载使用。
河北省新乐市2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份河北省新乐市2023-2024学年九上数学期末质量跟踪监视试题含答案,共9页。试卷主要包含了如图,太阳在A时测得某树,的绝对值为,下列事件是必然事件的为等内容,欢迎下载使用。
2023-2024学年河北省石家庄市裕华实验中学数学九上期末质量跟踪监视试题含答案: 这是一份2023-2024学年河北省石家庄市裕华实验中学数学九上期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列两个图形,将抛物线如何平移得到抛物线,若反比例函数的图象经过点等内容,欢迎下载使用。