广东省五华县联考2023-2024学年九上数学期末监测试题含答案
展开
这是一份广东省五华县联考2023-2024学年九上数学期末监测试题含答案,共7页。试卷主要包含了如图,点在上,,则的半径为,用配方法解方程,经过配方,得到,二次函数图像的顶点坐标是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如果用线段a、b、c,求作线段x,使,那么下列作图正确的是( )
A.B.
C.D.
2.下列事件中,是随机事件的是( )
A.三角形任意两边之和大于第三边
B.任意选择某一电视频道,它正在播放新闻联播
C.a是实数,|a|≥0
D.在一个装着白球和黑球的袋中摸球,摸出红球
3.某班抽取6名同学参加体能测试,成绩如下:1,95,1,80,80,1.下列表述错误的是( )
A.众数是1B.平均数是1C.中位数是80D.极差是15
4.如图,点在上,,则的半径为( )
A.3B.6C.D.12
5.将二次函数y=x2的图象沿y轴向上平移2个单位长度,再沿x轴向左平移3个单位长度,所得图象对应的函数表达式为( )
A.y=(x+3)2+2B.y=(x﹣3)2+2C.y=(x+2)2+3D.y=(x﹣2)2+3
6.用配方法解方程,经过配方,得到 ( )
A.B.C.D.
7.二次函数图像的顶点坐标是( )
A.B.C.D.
8.如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有( )
A.1个
B.2个
C.3个
D.4个
9.如图,在菱形中,,,则对角线等于( )
A.2B.4C.6D.8
10.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C 的位置,A1B1恰好经过点B,则旋转角α的度数等( )
A.70°B.65°C.55°D.35°
二、填空题(每小题3分,共24分)
11.如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的度数为 .
12.分解因式:=____________.
13.正方形的边长为,点是正方形的中心,将此正方形沿直线滚动(无滑动),且每一次滚动的角度都等于90°.例如:点不动,滚动正方形,当点上方相邻的点落在直线上时为第1次滚动.如果将正方形滚动2020次,那么点经过的路程等于__________.(结果不取近似值)
14.已知点,都在反比例函数图象上,则____(填“”或“”或“”).
15.如果抛物线经过原点,那么______.
16.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为___________.
17.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为_________m.
18.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为_____.
三、解答题(共66分)
19.(10分)在平面直角坐标系xOy中,直线y=x+b(k≠0)与双曲线一个交点为P(2,m),与x轴、y轴分别交于点A,B两点.
(1)求m的值;
(2)求△ABO的面积;
20.(6分)如图,点O为∠ABC的边上的一点,过点O作OM⊥AB于点,到点的距离等于线段OM的长的所有点组成图形.图形W与射线交于E,F两点(点在点F的左侧).
(1)过点作于点,如果BE=2,,求MH的长;
(2)将射线BC绕点B顺时针旋转得到射线BD,使得∠,判断射线BD与图形公共点的个数,并证明.
21.(6分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由
22.(8分)(1)解方程组:
(2)计算
23.(8分)在如图的小正方形网格中,每个小正方形的边长均为,格点(顶点是网格线的交点)的三个顶点坐标分别是,以为位似中心在网格内画出的位似图△A1B1C1,使与的相似比为,并计算出的面积.
24.(8分)如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,,过点E作EM∥BD,交BA的延长线于点M.
(1)求的半径;
(2)求证:EM是⊙O的切线;
(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.
25.(10分)一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:
小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.)
26.(10分)在一次徒步活动中,有甲、乙两支徒步队伍.队伍甲由A地步行到B地后按原路返回,队伍乙由A地步行经B地继续前行到C地后按原路返回,甲、乙两支队伍同时出发.设步行时间为x(分钟),甲、乙两支队伍距B地的距离为y1(千米)和y2(千米).(甲、乙两队始终保持匀速运动)图中的折线分别表示y1、y2与x之间的函数关系,请你结合所给的信息回答下列问题:
(1)A、B两地之间的距离为 千米,B、C两地之间的距离为 千米;
(2)求队伍乙由A地出发首次到达B地所用的时间,并确定线段MN表示的y2与x的函数关系式;
(3)请你直接写出点P的实际意义.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、C
4、B
5、A
6、D
7、D
8、C
9、A
10、A
二、填空题(每小题3分,共24分)
11、160°.
12、
13、
14、
15、1
16、.
17、
18、x1=2,x2=1
三、解答题(共66分)
19、(1)m=4,(1)△ABO的面积为1.
20、(1)MH=;(2)1个.
21、 (1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;
(3) A方案利润更高.
22、(1);(2)
23、画图见解析,的面积为1.
24、⑴ OE=2;⑵ 见详解 ⑶
25、能,.
26、(1)2;1;(2)线段MN表示的y2与x的函数解析式为y2=x﹣2(20≤x≤60);(3)点P的意义为:当x=分钟时,甲乙距B地都为千米.
次数
数字
相关试卷
这是一份广东省梅州市五华县2023-2024学年数学九上期末统考试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2023-2024学年广东省五华县数学九上期末质量跟踪监视试题含答案,共7页。试卷主要包含了下列事件是必然事件的是等内容,欢迎下载使用。
这是一份广东省五华县2023-2024学年数学九上期末考试试题含答案,共8页。试卷主要包含了下列说法错误的是,用配方法解方程时,应将其变形为,如图,空地上等内容,欢迎下载使用。