山东省定陶县2023-2024学年数学九上期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.已知反比例函数y=﹣,下列结论中不正确的是( )
A.图象必经过点(﹣3,2)B.图象位于第二、四象限
C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小
2.已知,则下列结论一定正确的是( )
A.B.C.D.
3.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:
若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( )
A.86B.87C.88D.89
4.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点为60°角与直尺交点,点为光盘与直尺唯一交点,若,则光盘的直径是( ).
A.B.C.6D.3
5.⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是( )
A.相交 B.相切 C.相离 D.无法确定
6.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A.m<3B.m>3C.m≤3D.m≥3
7.如图,以AB为直径的⊙O上有一点C,且∠BOC=50°,则∠A的度数为( )
A.65°B.50°C.30°D.25°
8.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是( )
A.300(1+x)=507B.300(1+x)2=507
C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=507
9.如图,在△ABC中,BC=8,高AD=6,点E,F分别在AB,AC上,点G,F在BC上,当四边形EFGH是矩形,且EF=2EH时,则矩形EFGH的周长为( )
A.B.C.D.
10.已知二次函数图象的一部分如图所示,给出以下结论:;当时,函数有最大值;方程的解是,;,其中结论错误的个数是
A.1B.2C.3D.4
二、填空题(每小题3分,共24分)
11.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为_____尺.
12.代数式有意义时,x应满足的条件是______.
13.汽车刹车后行驶的距离(单位:)关于行驶的时间(单位:)的函数解析式是.汽车刹车后到停下来前进了______.
14.分解因式:4x3﹣9x=_____.
15.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.
16.飞机着陆后滑行的距离(单位:)关于滑行的时间(单位:)的函数解析式是,飞机着陆后滑行______才能停下来.
17.《算学宝鉴》中记载了我国数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为_________.
18.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.
三、解答题(共66分)
19.(10分)如图,在△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,E是AC中点.
(1)求证:DE是⊙O的切线;
(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.
20.(6分)在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=8,DB=2,求CD的长
21.(6分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.
(1)求证:DE=OE;
(2)若CD∥AB,求证:BC是⊙O的切线;
(3)在(2)的条件下,求证:四边形ABCD是菱形.
22.(8分)在△ABC中,AD、CE分别是△ABC的两条高,且AD、CE相交于点O,试找出图中相似的三角形,并选出一组给出证明过程.
23.(8分)如图,抛物线y=﹣x2+4x+m﹣4(m为常数)与y轴交点为C,M(3,0)、N(0,﹣2)分别是x轴、y轴上的点.
(1)求点C的坐标(用含m的代数式表示);
(2)若抛物线与x轴有两个交点A、B,是否存在这样的m,使得线段AB=MN,若存在,求出m的值,若不存在,请说明理由;
(3)若抛物线与线段MN有公共点,求m的取值范围.
24.(8分)已知正比例函数y=k1x(k1≠0)与反比例函数的图象交于A、B两点,点A的坐标为(2,1).
(1)求正比例函数、反比例函数的表达式;
(2)求点B的坐标.
25.(10分)(1)解方程:;
(2)求二次函数的图象与坐标轴的交点坐标.
26.(10分)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)求△AOB的面积;
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、C
4、A
5、A
6、A
7、D
8、B
9、C
10、A
二、填空题(每小题3分,共24分)
11、3
12、.
13、6
14、x(2x+3)(2x﹣3)
15、55.
16、200
17、x(x-12)=864
18、
三、解答题(共66分)
19、(1)见解析;(2)OF=1.1
20、CD=1
21、(1)证明见解析;(2)证明见解析;(3)证明见解析.
22、△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA,证明见解析
23、(1)(0,m﹣4);(1)存在,m=;(3)﹣≤m≤1
24、(1)正比例函数、反比例函数的表达式为:,;(2)B点坐标是(-2,-1)
25、(1)x1=1+,x2=1﹣;(2)(5,0),(-3,0),(0,-15)
26、 (1)y=-;y=-x-2;(2)6
姓名
读
听
写
小莹
92
80
90
2023-2024学年山东省济南市九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年山东省济南市九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,以下事件为必然事件的是,反比例函数y=的图象经过点,下列函数的图象,不经过原点的是等内容,欢迎下载使用。
山东省潍坊市2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份山东省潍坊市2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了方程x2-4=0的解是等内容,欢迎下载使用。
山东省泰安市南关中学2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份山东省泰安市南关中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了若2y-7x=0,则x∶y等于等内容,欢迎下载使用。

