四川省广安市友谊中学2023-2024学年九年级数学第一学期期末预测试题含答案
展开
这是一份四川省广安市友谊中学2023-2024学年九年级数学第一学期期末预测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,解方程,选择最适当的方法是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.关于x的一元二次方程有两个不相等的实数根,则a的取值范围是( )
A.a>-1B.C.D.a>-1且
2. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )
A.20°B.30°C.40°D.50°
3.三角形两边长分别是和,第三边长是一元二次方程的一个实数根,则该三角形的面积是( )
A.B.C.或D.或
4.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是( )
A.B.C.D.
5.如图,在中,点分别在边上,且为边延长线上一点,连接,则图中与相似的三角形有( )个
A.B.C.D.
6.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是( )
A.B.C.D.
7.由的图像经过平移得到函数的图像说法正确的是( )
A.先向左平移6个单位长度,然后向上平移7个单位长度
B.先向左平移6个单位长度,然后向下平移7个单位长度
C.先向右平移6个单位长度,然后向上平移7个单位长度
D.先向右平移6个单位长度,然后向下平移7个单位长度
8.解方程,选择最适当的方法是( )
A.直接开平方法B.配方法C.公式法D.因式分解法
9.一元二次方程的一根是1,则的值是( )
A.3B.-3C.2D.-2
10.下列图形,既是轴对称图形又是中心对称图形的是( )
A.正三角形B.正五边形C.等腰直角三角形D.矩形
二、填空题(每小题3分,共24分)
11.如图,在矩形中,是上的点,点在上,要使与相似,需添加的一个条件是_______(填一个即可).
12.已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为_____.
13.已知扇形的圆心角为,所对的弧长为,则此扇形的面积是________.
14.边心距是的正六边形的面积为___________.
15.如图,已知⊙O的半径为1,AB,AC是⊙O的两条弦,且AB=AC,延长BO交AC于点D,连接OA,OC,若AD2=AB•DC,则OD=__.
16.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1 cm,则BF=__________cm.
17.二次函数y=-2x2+3的开口方向是_________.
18.若点A(1,y1)和点B(2,y2)在反比例函数y=﹣的图象上,则y1与y2的大小关系是_____.
三、解答题(共66分)
19.(10分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.
(1)求每个月生产成本的下降率;
(2)请你预测4月份该公司的生产成本.
20.(6分)已知抛物线与轴交于两点,与轴交于点.
(1)求此抛物线的表达式及顶点的坐标;
(2)若点是轴上方抛物线上的一个动点(与点不重合),过点作轴于点,交直线于点,连结.设点的横坐标为.
①试用含的代数式表示的长;
②直线能否把分成面积之比为1:2的两部分?若能,请求出点的坐标;若不能,请说明理由.
(3)如图2,若点也在此抛物线上,问在轴上是否存在点,使?若存在,请直接写出点的坐标;若不存在,请说明理由.
21.(6分)在中,,,以点为圆心、为半径作圆,设点为⊙上一点,线段绕着点顺时针旋转,得到线段,连接、.
(1)在图中,补全图形,并证明 .
(2)连接,若与⊙相切,则的度数为 .
(3)连接,则的最小值为 ;的最大值为 .
22.(8分)在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.
(1)如图1,取点M(1,0),则点M到直线l:y=x﹣1的距离为多少?
(2)如图2,点P是反比例函数y=在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=?若存在,求出点P的坐标,若不存在,请说明理由.
(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m的解析式.
23.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在线段BA上以每秒3cm的速度点A运动,同时动点N从点C出发,在线段CB上以每秒2cm的速度向点B运动,其中一点到达终点后,另一点也停止运动.运动时间为t秒,连接MN.
(1)填空:BM= cm.BN= cm.(用含t的代数式表示)
(2)若△BMN与△ABC相似,求t的值;
(3)连接AN,CM,若AN⊥CM,求t的值.
24.(8分)一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
解答下列问题:
如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______;
如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.
25.(10分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.
(1)当点B于点O重合的时候,求三角板运动的时间;
(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.
①求证:EF平分∠AEC;
②求EF的长.
26.(10分)如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)
(1)在圆①中画圆的一个内接正六边形;
(2)在图②中画圆的一个内接正八边形.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、D
4、B
5、D
6、D
7、C
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一个即可)
12、(4,0).
13、
14、
15、.
16、2+
17、向下.
18、y1<y1
三、解答题(共66分)
19、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.
20、(1),顶点坐标为:;(2)①;②能,理由见解析,点的坐标为;(3)存在,点Q的坐标为:或.
21、(1)证明见解析;(2)或 ;(3)
22、(1);(2)点P(,2)或(2,);(3)y=﹣2x+1
23、(1)3t, 8-2t;(2)△BMN与△ABC相似时,t的值为s或s;(3)t的值为.
24、(1);(2)的值可以为其中一个.
25、(1)2s(2)①证明见解析,②
26、(1)见解析;(2)见解析
摸球总次数
“和为”出现的频数
“和为”出现的频率
相关试卷
这是一份四川省广安市2023-2024学年九年级数学第一学期期末预测试题含答案,共8页。试卷主要包含了下列方程中,没有实数根的是等内容,欢迎下载使用。
这是一份2023-2024学年四川省广安市友谊中学数学九年级第一学期期末达标检测模拟试题含答案,共7页。
这是一份2023-2024学年四川省广安市广安友谊中学数学九上期末综合测试试题含答案,共9页。试卷主要包含了图中三视图所对应的直观图是等内容,欢迎下载使用。