2023-2024学年辽宁省盖州市东城中学九上数学期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cs24°≈0.91,tan24°=0.45)( )
A.21.7米B.22.4米C.27.4米D.28.8米
2.把抛物线向右平移3个单位,再向上平移2个单位,得到抛物线( ).
A.B.C.D.
3.如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则应水坡面AB的长度是( )
A.100mB.100mC.150mD.50m
4.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=65°,∠ABC=68°,则∠A的度数为( ).
A.112°B.68°C.65°D.52°
5.某校准备修建一个面积为200平方米的矩形活动场地,它的长比宽多12米,设场地的宽为x米,根据题意可列方程为( )
A.x(x﹣12)=200B.2x+2(x﹣12)=200
C.x(x+12)=200D.2x+2(x+12)=200
6.抛物线y=2x2﹣3的顶点坐标是( )
A.(0,﹣3)B.(﹣3,0)C.(﹣,0)D.(0,﹣)
7.下列银行标志图片中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
8.某盏路灯照射的空间可以看成如图所示的圆锥,它的高米,底面半径米,则圆锥的侧面积是多少平方米(结果保留). ( )
A.B.C.D.
9.如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上的一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则下列结论中:
①;②;③tan∠EAF=;④正确的是()
A.①②③B.①②④C.①③④D.②③④
10.已知,下列说法中,不正确的是( )
A.B.与方向相同
C.D.
二、填空题(每小题3分,共24分)
11.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.
12.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)
13.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为______________________.
14.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.
15.在平面直角坐标系中,点与点关于原点对称,则__________.
16.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.
17.若是一元二次方程的两个根,则=___________.
18.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们归纳出为“杠杆原理”.已知,手压压水井的阻力和阻力臂分别是90和0.3,则动力(单位:)与动力臂(单位:)之间的函数解析式是__________.
三、解答题(共66分)
19.(10分)如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB的距离).(结果取整,参考数据sin15°≈0.26,cs15°≈0.97,tan15°≈0.27,≈1.73)
20.(6分)计算:2cs30°-tan45°-.
21.(6分)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆,据统计,第一个月进馆200人次,此后进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.
(1)求进馆人次的月平均增长率;
(2)因条件限制,学校图书馆每月接纳能力不得超过400人次,若进馆人次的月平均增长率不变,到第几个月时,进馆人数将超过学校图书馆的接纳能力,并说明理由.
22.(8分)如图,一块直角三角板的直角顶点P放在正方形ABCD的BC边上,并且使条直角边经过点D,另一条直角边与AB交于点Q.请写出一对相似三角形,并加以证明.(图中不添加字母和线段)
23.(8分)已知:△ABC内接于⊙O,过点A作直线EF.
(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):① 或② ;
(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.
(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.
24.(8分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
25.(10分)如图,已知,点、坐标分别为、.
(1)把绕原点顺时针旋转得,画出旋转后的;
(2)在(1)的条件下,求点旋转到点经过的路径的长.
26.(10分)已知三个顶点的坐标分别.
(1)画出;
(2)以B为位似中心,将放大到原来的2倍,在右图的网格图中画出放大后的图形△;
(3)写出点A的对应点的坐标:___.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、A
4、C
5、C
6、A
7、B
8、A
9、A
10、A
二、填空题(每小题3分,共24分)
11、
12、(答案不唯一)
13、
14、(2,10)或(﹣2,0)
15、1
16、6
17、1
18、
三、解答题(共66分)
19、台灯的高约为45cm.
20、-1.
21、(1)进馆人次的月平均增长率为20%;(2)到第五个月时,进馆人数将超过学校图书馆的接纳能力,见解析
22、△BPQ∽△CDP,证明见解析.
23、(1)①OA⊥EF;②∠FAC=∠B;(2)见解析;(3)见解析.
24、(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元
25、(1)答案见解析;(2).
26、(1)见解析;(2)见解析;(3)(−3,1)
辽宁省丹东市2023-2024学年九上数学期末调研试题含答案: 这是一份辽宁省丹东市2023-2024学年九上数学期末调研试题含答案,共9页。试卷主要包含了若二次函数的图象经过点,二次函数的顶点坐标是等内容,欢迎下载使用。
辽宁省盖州市东城中学2023-2024学年数学九年级第一学期期末学业水平测试试题含答案: 这是一份辽宁省盖州市东城中学2023-2024学年数学九年级第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了下列不是一元二次方程的是等内容,欢迎下载使用。
辽宁省灯塔市2023-2024学年九上数学期末调研试题含答案: 这是一份辽宁省灯塔市2023-2024学年九上数学期末调研试题含答案,共7页。试卷主要包含了下列说法正确的是,二次函数图象如图,下列结论,下列事件中,是随机事件的是,下列几何体的三视图相同的是,由不能推出的比例式是等内容,欢迎下载使用。