2023-2024学年贵州省思南县联考九年级数学第一学期期末预测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.若,则的值为( )
A.1B.C.D.
2.如图,将△ABC绕点A顺时针旋转 60°得到△AED,若线段AB=3,则BE=( )
A.2B.3C.4D.5
3.如图所示的是几个完全相同的小正方体搭建成的几何体的俯视图,其中小正方形内的数字为对应位置上的小正方体的个数,则该几何体的左视图为( )
A.B.C.D.
4.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )
A.B.C.D.
5.若关于的一元二次方程有两个相等的根,则的值为( )
A.B.C.或D.或
6.如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为( )
A.B.C.D.
7.如图1,S是矩形ABCD的AD边上一点,点E以每秒kcm的速度沿折线BS-SD-DC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动.已知点F运动到点B时,点E也恰好运动到点C,此时动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为.已知y与t的函数图像如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:
①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒;
②矩形ABCD的两邻边长为BC=6cm,CD=4cm;
③sin∠ABS=;
④点E的运动速度为每秒2cm.其中正确的是( )
A.①②③B.①③④C.①②④D.②③④
8.如图,已知∠BAC=∠ADE=90°,AD⊥BC,AC=DC.关于优弧CAD,下列结论正确的是( )
A.经过点B和点EB.经过点B,不一定经过点E
C.经过点E,不一定经过点BD.不一定经过点B和点E
9.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为( )
A.B.C.D.3
10.中,,是边上的高,若,则等于( )
A.B.或C.D.或
二、填空题(每小题3分,共24分)
11.如图,在△ABC中,AC:BC:AB=3:4:5,⊙O沿着△ABC的内部边缘滚动一圈,若⊙O的半径为1,且圆心O运动的路径长为18,则△ABC的周长为_____.
12.分解因式:__________.
13.把多项式分解因式的结果是 .
14.在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率为,则x=_______.
15.二次函数中的自变量与函数值的部分对应值如下表:
则的解为________.
16.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),则点D的坐标是_____.
17.如图,在平面直角坐标系中,已知函数和,点为轴正半轴上一点,为轴上一点,过作轴的垂线分别交,的图象于,两点,连接,,则的面积为_________ .
18.已知二次函数的图象如图所示,下列结论:①;②;③;④,其中正确的是_________.(把所有正确结论的序号都填在横线上)
三、解答题(共66分)
19.(10分)某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元,求该企业从2015年到2017年利润的年平均增长率.
20.(6分)我区某校组织了一次“诗词大会”,张老师为了选拔本班学生参加,对本班全体学生诗词的掌握情况进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:
(1)全班学生共有 人;
(2)扇形统计图中,B类占的百分比为 %,C类占的百分比为 %;
(3)将上面的条形统计图补充完整;
(4)小明被选中参加了比赛.比赛中有一道必答题是:从下表所示的九宫格中选取七个字组成一句诗,其答案为“便引诗情到碧霄”.小明回答该问题时,对第四个字是选“情”还是选“青”,第七个字是选“霄”还是选“宵”,都难以抉择,若分别随机选择,请用列表或画树状图的方法求小明回答正确的概率.
21.(6分)如图,一块直角三角板的直角顶点P放在正方形ABCD的BC边上,并且使条直角边经过点D,另一条直角边与AB交于点Q.请写出一对相似三角形,并加以证明.(图中不添加字母和线段)
22.(8分)如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC边于E点,点E不与点C重合,若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,
(1)试证明:△AEP∽△ABC;
(2)求y与x之间的函数关系式.
23.(8分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.
(1)求证:△AHF为等腰直角三角形.
(2)若AB=3,EC=5,求EM的长.
24.(8分)(1)计算:4sin260°+tan45°-8cs230°
(2)在Rt△ABC中,∠C=90°.若∠A=30°,b=5,求a、c.
25.(10分)如图1,▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F.
(1)求证:四边形EBFD是平行四边形;
(2)如图2,小明在完成(1)的证明后继续进行了探索.连接AF、CE,分别交BE、FD于点G、H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图3)中补全他的证明思路,再在答题纸上写出规范的证明过程.
26.(10分)如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.
(1)求证:BC是⊙D的切线;
(2)若AB=5,BC=13,求CE的长.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、A
4、A
5、B
6、C
7、C
8、B
9、B
10、B
二、填空题(每小题3分,共24分)
11、4
12、
13、m(4m+n)(4m﹣n).
14、1
15、或
16、 (3,2)
17、1
18、①②③
三、解答题(共66分)
19、该企业从2015年到2017年利润的年平均增长率为20%
20、(1)40;(2)60,15;(3)补全条形统计图见解析;(4)小明回答正确的概率是.
21、△BPQ∽△CDP,证明见解析.
22、(1)见解析;(2)y=.(0<x<6.4)
23、(1)见解析;(2)EM=
24、(1)2 ;(2)a=5,c=1
25、(1)证明见解析;(2)证明见解析
26、 (1)证明详见解析;(2).
…
…
…
…
情
到
碧
霄
诗
青
引
宵
便
2023-2024学年贵州省思南县联考九年级数学第一学期期末教学质量检测试题含答案: 这是一份2023-2024学年贵州省思南县联考九年级数学第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年贵州省铜仁市思南县数学九年级第一学期期末综合测试模拟试题含答案: 这是一份2023-2024学年贵州省铜仁市思南县数学九年级第一学期期末综合测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,sin 30°的值为等内容,欢迎下载使用。
2023-2024学年贵州省铜仁市思南县九上数学期末统考模拟试题含答案: 这是一份2023-2024学年贵州省铜仁市思南县九上数学期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。