2023-2024学年广西钦州市钦州港经济技术开发区中学数学九上期末学业水平测试试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为( )
A.B.
C.D.
2.如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为
A.46°B.53°C.56°D.71°
3.的半径为,弦,,,则、间的距离是:( )
A.B.C.或D.以上都不对
4.下列一元二次方程中两根之和为﹣3的是( )
A.x2﹣3x+3=0B.x2+3x+3=0C.x2+3x﹣3=0D.x2+6x﹣4=0
5.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是( )
A.抛物线开口向上 B.抛物线与y轴交于负半轴
C.当x=3时,y<0 D.方程ax2+bx+c=0有两个相等实数根
6.下列函数中,是反比例函数的是( )
A.B.C.D.
7.用配方法解方程x2+4x+1=0时,方程可变形为 ( )
A.B.C.D.
8.如图,的半径为,圆心到弦的距离为,则的长为( )
A.B.C.D.
9.如图,矩形ABCD中,连接AC,延长BC至点E,使,连接DE,若,则∠E的度数是( )
A.65°B.60°C.50°D.40°
10. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为
A.9B.6C.4D.3
二、填空题(每小题3分,共24分)
11.如果方程x2+4x+n=0可以配方成(x+m)2=3,那么(n﹣m)2020=_____.
12.如图是抛物线图象的一部分,抛物线的顶点坐标为,与轴的一个交点为,点和点均在直线上.①;②;③抛物线与轴的另一个交点时;④方程有两个不相等的实数根;⑤;⑥不等式的解集为.
上述六个结论中,其中正确的结论是_____________.(填写序号即可)
13.如图,直线分别交轴,轴于点A和点B,点C是反比例函数的图象上位于直线下方的一点,CD∥轴交AB于点D,CE∥轴交AB于点E,,则的值为______
14.已知四条线段a、2、6、a+1成比例,则a的值为_____.
15.长为的梯子搭在墙上与地面成角,作业时调整为角(如图所示),则梯子的顶端沿墙面升高了______.
16.如果函数是关于的二次函数,则__________.
17.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为_____.
18.如图所示是二次函数的图象,下列结论:
①二次三项式的最大值为;
使成立的的取值范围是;
一元二次方程,当时,方程总有两个不相等的实数根;
该抛物线的对称轴是直线;
其中正确的结论有______________ (把所有正确结论的序号都填在横线上)
三、解答题(共66分)
19.(10分)如图,直线与轴交于点,与轴交于点,抛物线经过点,.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,
①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;
②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.
20.(6分)每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为:
直接写出与的函数关系式,并注明自变量的取值范围;
设日销售额为(元) ,求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;
由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态
21.(6分)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调查结果绘制成如下不完整的统计表和统计图.
学生选修课程统计表
根据以上信息,解答下列问题:
(1) , .
(2)求出的值并补全条形统计图.
(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.
(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.
22.(8分)已知抛物线与轴交于A,B两点(A在B左边),与轴交于C点,顶点为P,OC=2AO.
(1)求与满足的关系式;
(2)直线AD//BC,与抛物线交于另一点D,△ADP的面积为,求的值;
(3)在(2)的条件下,过(1,-1)的直线与抛物线交于M、N两点,分别过M、N且与抛物线仅有一个公共点的两条直线交于点G,求OG长的最小值.
23.(8分)如图,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).将△AOB绕点O逆时针旋转90°后得到△A1OB1.
(1)画出旋转后的△A1OB1,点A1的坐标为______ ;
(2)在旋转过程中,点B经过的路径的长.
24.(8分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.
(1)求此抛物线的解析式和直线AB的解析式;
(2)如图①,动点E从O点出发,沿着OA方 向 以1个单位/秒的速度向终点A匀速运动,同时, 动点F从A点出发,沿着AB方向以个单位/ 秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?
(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.
25.(10分)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.
(1)求(-2)☆3的值;
(2)若=8,求a的值.
26.(10分)已知是关于的一元二次方程的两个实数根.
(1)求的取值范围;
(2)若,求的值;
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、C
4、C
5、C
6、C
7、C
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、1
12、①④
13、
14、3
15、2-2
16、1
17、2π
18、①③④
三、解答题(共66分)
19、(1)B(0,2),;(2)①点M的坐标为(,0)或M(,0);②m=-1或m=或m=.
20、(1)y=,(2)w=,在这15天中,第9天销售额达到最大,最大销售额是1元,(3)第13天、第14天、第15天这3天,专柜处于亏损状态.
21、(1)50、28;(2),补全图形见解析;(3)估计选修“声乐”课程的学生有420人;(4)所抽取的2人恰好来自同一个班级的概率为.
22、(1);(2);(3).
23、 (1)图见解析,点A 1 (-2,3);(2).
24、(1)抛物线的解析式为y=﹣x2+2x+3,直线AB的解析式为y=﹣x+3;(2)t=或;(3)存在面积最大,最大值是,此时点P(,).
25、 (1)-32;(2) a=1.
26、(1);(2).
x
…
﹣1
0
1
2
…
y
…
﹣5
1
3
1
…
课程
人数
所占百分比
声乐
14
舞蹈
8
书法
16
摄影
合计
2023-2024学年广西钦州市钦州港经济技术开发区九上数学期末联考试题含答案: 这是一份2023-2024学年广西钦州市钦州港经济技术开发区九上数学期末联考试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年成都十八中学数学九上期末学业水平测试模拟试题含答案: 这是一份2023-2024学年成都十八中学数学九上期末学业水平测试模拟试题含答案,共7页。试卷主要包含了抛物线,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年白山市重点中学数学九上期末学业水平测试试题含答案: 这是一份2023-2024学年白山市重点中学数学九上期末学业水平测试试题含答案,共8页。试卷主要包含了中,,是边上的高,若,则等于等内容,欢迎下载使用。