2023-2024学年福建省福州六中学九上数学期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图,点,分别在反比例函数,的图象上.若,,则的值为( )
A.B.C.D.
2.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )
A.①②③④B.④③②①C.④③①②D.②③④①
3.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是2cm,则这个正六边形的周长是( )
A.12B.6C.36D.12
4.估计 ,的值应在( )
A.1和2之间B.2和3之间C.3和4之间D.4和5之间
5.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( )
A.B.C.D.
6.如图,为的切线,切点为,连接,与交于点,延长与交于点,连接,若,则的度数为( )
A.B.C.D.
7.如图,⊙O 中,弦 AB、CD 相交于点 P,∠A=40°,∠APD=75°,则∠B 的度数是( )
A.15°B.40°C.75°D.35°
8.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点.AB⊥x轴于B,CD⊥x轴于D,当四边形ABCD的面积为6时,则k的值是( )
A.6B.3C.2D.
9.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是( )
A.B.C.D.
10.下列事件中,是必然事件的是( )
A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球
B.抛掷一枚普通正方体骰子,所得点数小于7
C.抛掷一枚一元硬币,正面朝上
D.从一副没有大小王的扑克牌中抽出一张,恰好是方块
二、填空题(每小题3分,共24分)
11.关于的一元二次方程的一个根,则另一个根______.
12.如图,二次函数的图象与轴交于点,与轴的一个交点为,点在抛物线上,且与点关于抛物线的对称轴对称.已知一次函数的图象经过两点,根据图象,则满足不等式的的取值范围是_____________
13.已知正方形ABCD边长为4,点P为其所在平面内一点,PD=,∠BPD=90°,则点A到BP的距离等于_____.
14.边心距是的正六边形的面积为___________.
15.如果关于的方程有两个相等的实数根,那么的值为________,此时方程的根为_______.
16.如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A与BC边上的点E重合,折痕交AB于点F.若BE:EC=m:n,则AF:FB=
17.已知菱形ABCD的两条对角线相交于点O,若AB = 6,∠BDC = 30°,则菱形的面积为 .
18.已知某品牌汽车在进行刹车测试时发现,该品牌某款汽车刹车后行驶的距离(单位:米)与行驶时间 (单位:秒)满足下面的函数关系: .那么测试实验中该汽车从开始刹车到完全停止,共行驶了_________米.
三、解答题(共66分)
19.(10分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.
(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是__________;
(2)随机选取2名同学,求其中有乙同学的概率.
20.(6分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.
(1)求证:NQ⊥PQ;
(2)若⊙O的半径R=3,NP=,求NQ的长.
21.(6分)(操作发现)
如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.
(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;
(2)在(1)所画图形中,∠AB′B=____.
(问题解决)
(3)如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.
小明同学通过观察、分析、思考,对上述问题形成了如下想法:
想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;
想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…
请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)
22.(8分)某商店经营家居收纳盒,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每个收纳盒售价不能高于40元.设每个收纳盒的销售单价上涨了元时(为正整数),月销售利润为元.
(1)求与的函数关系式.
(2)每个收纳盒的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
23.(8分)在一不透明的口袋中装有3个球,这3个球分别标有1,2,3,这些球除了数字外都相同.
(1)如果从袋子中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?
(2)小明和小亮玩摸球游戏,游戏的规则如下:先由小明随机摸出一个球,记下球的数字后 放回,搅匀后再由小亮随机摸出一个球,记下数字.谁摸出的球的数字大 ,谁获胜.请你用树状图或列 表法分析游戏规则对双方是否公平?并说明理由.
24.(8分) “共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士.如图是四位院士(依次记为、、、).为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上、、、四个标号,然后背面朝上放置,搅匀后每个同学从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料,并做成小报.
(1)班长在四种卡片中随机抽到标号为C的概率为______.
(2)请用画树状图或列表的方法求小明和小华查找不同院士资料的概率.
25.(10分)某便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能够售出240件.经过调查发现:如果每件涨价1元,那么每天就少售20件;如果每件降价1元,那么每天能够多售出40件.
(1)如果降价,那么每件要降价多少元才能使销售盈利达到1960元?
(2)如果涨价,那么每件要涨价多少元オ能使销售盈利达到1980元?
26.(10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.
(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.
①写出旋转角α的度数;
②求证:EA′+EC=EF;
(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、D
4、B
5、D
6、D
7、D
8、B
9、B
10、B
二、填空题(每小题3分,共24分)
11、1
12、
13、或
14、
15、1
16、
17、18
18、1
三、解答题(共66分)
19、(1)(2)
20、(1)见解析;(2).
21、(1)如图,△AB′C′即为所求;见解析;(1)45°;(3)S△APC=.
22、(1)(0≤x≤10);(2)32元;(3)售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
23、(1).(2)公平,理由见解析.
24、 (1);(2).
25、(1)每件要降价1元才能使销售盈利达到1960元;(2)每件要涨价1元或3元オ能使销售盈利达到1980元.
26、(1)①105°,②见解析;(2)
2023-2024学年福建省福州市金山中学九上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年福建省福州市金山中学九上数学期末达标检测模拟试题含答案,共8页。
福建省福州文博中学2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份福建省福州文博中学2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。
福建省福州市华伦中学2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份福建省福州市华伦中学2023-2024学年九上数学期末达标检测模拟试题含答案,共8页。