2023-2024学年河南省林州市九上数学期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.下列两个图形,一定相似的是( )
A.两个等腰三角形B.两个直角三角形
C.两个等边三角形D.两个矩形
2.圆的面积公式S=πR2中,S与R之间的关系是( )
A.S是R的正比例函数B.S是R的一次函数
C.S是R的二次函数D.以上答案都不对
3.对于反比例函数,下列说法错误的是( )
A.它的图像在第一、三象限
B.它的函数值随的增大而减小
C.点为图像上的任意一点,过点作轴于点.的面积是.
D.若点和点在这个函数图像上,则
4.把二次函数y=﹣(x+1)2﹣3的图象沿着x轴翻折后,得到的二次函数有( )
A.最大值y=3B.最大值y=﹣3C.最小值y=3D.最小值y=﹣3
5.已知点P(a+1,)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )
A.B.
C.D.
6.点在反比例函数y=的图象上,则k的值是( )
A.1B.3C.﹣1D.﹣3
7.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为( )
A.1B.C.2D.
8.如图是二次函数y=ax2+bx+c的图象,对于下列说法:其中正确的有( )
①ac>0,
②2a+b>0,
③4ac<b2,
④a+b+c<0,
⑤当x>0时,y随x的增大而减小,
A.5个B.4个C.3个D.2个
9.平面直角坐标系内一点P(2,-3)关于原点对称点的坐标是( )
A.(3,-2) B.(2,3) C.(-2,3) D.(2,-3)
10.如图是某体育馆内的颁奖台,其左视图是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是_______m.
12.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为_____.
13.如图,若直线与轴、轴分别交于点、,并且,,一个半径为的,圆心从点开始沿轴向下运动,当与直线相切时,运动的距离是__________.
14.抛物线y=(x+2)2-2的顶点坐标是________.
15.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.1.根据上述数据,估计口袋中大约有_______个黄球
16.如图,抛物线y=﹣2x2+2与x轴交于点A、B,其顶点为E.把这条抛物线在x轴及其上方的部分记为C1,将C1向右平移得到C2,C2与x轴交于点B、D,C2的顶点为F,连结EF.则图中阴影部分图形的面积为______.
17.若最简二次根式与是同类根式,则________.
18.已知二次函数y=ax2+bx+c的图象如图所示,则a_____1,b_____1,c_____1.
三、解答题(共66分)
19.(10分)如图是四个全等的小矩形组成的图形,这些矩形的顶点称为格点.△ABC是格点三角形(顶点是格点的三角形)
(1)若每个小矩形的较短边长为1,则BC= ;
(2)①在图1、图2中分别画一个格点三角形(顶点是格点的三角形),使它们都与△ABC相似(但不全等),且图1,2中所画三角形也不全等).
②在图3中只用直尺(没有刻度)画出△ABC的重心M.(保留痕迹,点M用黑点表示,并注上字母M)
20.(6分)如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).
(1)画出△ABC关于原点O中心对称的图形△A1B1C1;
(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB扫过的面积.
21.(6分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.
(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.
①写出旋转角α的度数;
②求证:EA′+EC=EF;
(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)
22.(8分)计算:sin45°+2cs30°﹣tan60°
23.(8分)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡米,坡度为;将斜坡的高度降低米后,斜坡改造为斜坡,其坡度为.求斜坡的长.(结果保留根号)
24.(8分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.
(1)若AE=4,求EC的长;
(2)若M为BC的中点,S△ABC=36,求S△ADN的值.
25.(10分)如图所示,已知二次函数y=-x2+bx+c的图像与x轴的交点为点A(3,0)和点B,与y轴交于点C(0,3),连接AC.
(1)求这个二次函数的解析式;
(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标及△ACD面积的最大值,若不存在,请说明理由.
(3)在抛物线上是否存在点E,使得△ACE是以AC为直角边的直角三角形如果存在,请直接写出点E的坐标即可;如果不存在,请说明理由.
26.(10分)某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y=﹣2x+800(200<x<400).
(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?
(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、B
4、C
5、C
6、B
7、D
8、C
9、C
10、D
二、填空题(每小题3分,共24分)
11、1
12、1
13、3或1
14、(-2,-2)
15、2
16、1
17、1
18、< < >
三、解答题(共66分)
19、 (1);(2)①见解析;②见解析
20、(1)见解析;(2)
21、(1)①105°,②见解析;(2)
22、1
23、斜坡的长是米.
24、(1)2(2)8
25、(1)y=-x2+2x+1;(2)抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为( , )且△ACD面积的最大值 ;(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形
点E的坐标是(1,4)或(-2,-5).
26、(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元.
河北保定雄县2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份河北保定雄县2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,抛物线y=等内容,欢迎下载使用。
广东韶关曲江2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份广东韶关曲江2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,已知如图,的倒数是,下列命题是真命题的个数是等内容,欢迎下载使用。
2023-2024学年河南省辉县数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年河南省辉县数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如图所示,几何体的左视图为,下列事件不属于随机事件的是,已知,下列说法中,不正确的是等内容,欢迎下载使用。